Principles of Mathematics 11 – Module A Calculating the x- and y-intercepts

Eind tho a	and y-intercepts	algebraically	if they exist
ring the x-	and y-intercepts	argeoratearry,	II they exist.

$$y = (x-3)^2 - 4$$

$$y = (x-1)^2 - 4$$

y-intercept: _____
x-intercept(s): _____

y-intercept: _____
x-intercept(s): _____

3.
$$y = (x+3)^2 - 49$$

4.
$$y = (x+3)^2 - 64$$

y-intercept: _____ x-intercept(s): _____ y-intercept: _____ x-intercept(s): _____

$$\int y = (x-2)^2$$

6.
$$y = (x+5)^2$$

y-intercept: _____
x-intercept(s): _____

y-intercept: _____ *x*-intercept(s): _____

7.
$$y = (x-3)^2 - 5$$

$$y = (x-2)^2 - 7$$

y-intercept: _____ x-intercept(s): _____ y-intercept: _____
x-intercept(s): _____

 $=(x-2)^2+7$

10. $y = (x+1)^2 + 3$

y-intercept: _____ *x*-intercept(s): _____ y-intercept: _____
x-intercept(s): _____

 $=2(x-3)^2-72$

12. $y = 3(x-2)^2 - 27$

y-intercept: _____ x-intercept(s): _____ y-intercept: _____ x-intercept(s): _____

 $=-(x+1)^2+4$

14. $y = -(x+2)^2 + 36$

y-intercept: _____ x-intercept(s): _____ y-intercept: _____x-intercept(s): _____

 $= x^2 + 2x + 1$

16. $y = x^2 + 6x + 9$

y-intercept: _____ *x*-intercept(s): _____ y-intercept: _____ x-intercept(s): _____