Year End Review: Systems of Equations

A system of equations is two or more equations with two or more variables. For example, the equations 2x + 3y = 12 and 4x + 7y = 28 is a system of equations. The solution of a linear system can is the intersection point of the two equations. This point can be found algebraically or graphically.

Example 1: Graph the following lines.

To solve graphically, the two equations must be rearranged to isolate y, graphed, and find the intersection point.

Example 2: Find the solution to the following systems of equations.

The steps to solve a linear system by substitution are

- Isolate for a variable in one equation.
 (Does not matter which equation or variable)
- 2. Substitute this new equation into the other equation not used yet.
- 3. Solve for the variable.
- 4. Find the value of the other variable.

Example 3: Solve the following systems by substitution.

a)
$$x-y=3$$

 $x+y=5$ $y=-x+5$
 $x-(-x+5)=3$
 $2x=5=3$
 $2x=8$
 $x=4$
 $4-y=3$

(b)
$$2x-4y=-2$$

 $x+4y=-4$ $x=-4y-4$
 $2(-4y-4)-4y=-2$
 $-8y-8-4y=-2$
 $-12y-8=-3$ $x+4(-0.5)=-4$
 $-12y=6$
 $y=-0.5$ $x=-2$

The steps to solve a linear system by elimination are:

- 1. Obtain equal but opposite coefficients in front of one variable.
- 2. Add this new equation and the second original equation.
- 3. Solve for x and y.

Example 4: Solve the following linear systems using the elimination method.

a)
$$3x-2y=12$$

 $2(2x+y=1)$
 $3x-2y-12$
 $4x+2y=2$
 $7x=14$
 $x=2$
 $3(2)-2y=12$
 $6-2y=12$
 $-2y=6$
 $y=-3$
 $3x-2(-3)=12$
 $3x+6=12$ $3x=6$
 $x=2$

(b)
$$2(4x + 3y = 19)$$

 $7x - 6y = -23$
 $8x + 6y = 38$
 $15x = 15$
 $x = 1$
 $4(1) + 3y = 19$
 $4 + 3y = 19$
 $3y = 15$
 $4 = 5$