Quadratics Review KEY

0 min 0 marks

1.	(a)	$x^2 - 3x - 10 = (x - 5)(x + 2)$	(M1)(A1)	(C2)	
	(b)	$x^{2} - 3x - 10 = 0 \Longrightarrow (x - 5)(x + 2) = 0$	(M1)		
		$\Rightarrow x = 5 \text{ or } x = -2$	(A1)	(C2)	
					[4]

(7-x)(1+x) = 0	(M1)
$\Leftrightarrow x = 7 \text{ or } x = -1$	(A1)(C1)(C1)
$B: x = \frac{7 + -1}{2} = 3;$	(A1)
y = (7 - 3)(1 + 3) = 16	(A1) (C2)
	$\Leftrightarrow x = 7 \text{ or } x = -1$ B: $x = \frac{7 + -1}{2} = 3;$

Discriminant $\Delta = b^2 - 4ac \ (= (-2k)^2 - 4)$ $\Delta > 0$ <i>Note:</i> Award (M1)(M0) for $\Delta \ge 0$.	(A1) (M2)
$(2k)^2 - 4 > 0 \Longrightarrow 4k^2 - 4 > 0$	
EITHER	
$4k^2 > 4 \ (k^2 > 1)$	(A1)
OR	
4(k-1)(k+1) > 0	(A1)
OR	
(2k-2)(2k+2) > 0	(A1)
	$\Delta > 0$ Note: Award (M1)(M0) for $\Delta \ge 0$. $(2k)^{2} - 4 > 0 \Longrightarrow 4k^{2} - 4 > 0$ EITHER $4k^{2} > 4 (k^{2} > 1)$ OR 4(k-1)(k+1) > 0 OR

[4]

THEN

$$k < -1 \text{ or } k > 1$$
 (A1)(A1) (C6)
Note: Award (A1) for $-1 < k < 1$.

[6]

4. (a) evidence of attempting to solve f(x) = 0 (M1) evidence of correct working A1 $eg(x+1)(x-2), \frac{1\pm\sqrt{9}}{2}$ intercepts are (-1, 0) and (2, 0) (accept x = -1, x = 2) A1A1 N1N1

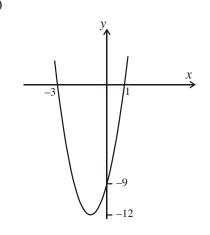
(b) evidence of appropriate method (M1)

eg
$$x_v = \frac{x_1 + x_2}{2}, x_v = -\frac{b}{2a}$$
, reference to symmetry
 $x_v = 0.5$ A1 N2

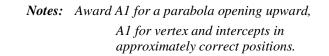
5. (a)
$$f(x) = 3(x^2 + 2x + 1) - 12$$

= $3x^2 + 6x + 3 - 12$
= $3x^2 + 6x - 9$
A1
A1
AG N0

(b) (i) vertex is
$$(-1, -12)$$
A1A1N2(ii) $x = -1$ (**must** be an equation)A1N1(iii) $(0, -9)$ A1N1(iv) evidence of solving $f(x) = 0$ (M1)eg factorizing, formula,
correct workingA1eg $3(x + 3)(x - 1) = 0, x = \frac{-6 \pm \sqrt{36 + 108}}{6}$ A1A1 N1N1



A1A1 N2



(d)
$$\binom{p}{q} = \binom{-1}{-12}, t = 3$$
 (accept $p = -1, q = -12, t = 3$) A1A1A1 N3 [15]

6. (a) For attempting to complete the square or expanding
$$y = 2(x-c)^2 + d$$
,
or for showing the vertex is at (3, 5) M1
 $y = 2(x-3)^2 + 5$ (accept $c = 3, d = 5$) A1A1 N2
(b) (i) $k = 2$ A1 N1
(ii) $p = 3$ A1 N1
(iii) $q = 5$ A1 N1

7. (a) (i)
$$m = 3$$
 A2 N2

 (ii) $p = 2$
 A2 N2

[6]

(b)	Appropriate substitution	M1	
	$eg \ 0 = d(1-3)^2 + 2, \ 0 = d(5-3)^2 + 2, \ 2 = d(3-1)(3-5)$		
	$d = -\frac{1}{2}$	A1	N1

8. (a) METHOD 1

	Using the discriminant = $0 (q^2 - 4(4)(25) = 0)$	M1	
	$q^2 = 400$		
	q = 20, q = -20	A1A1	N2
	METHOD 2		
	Using factorizing: (2x-5)(2x-5) and/or $(2x+5)(2x+5)$	M1	
	q = 20, q = -20	A1A1	N2
(b)	x = 2.5	A1	N1
(c)	(0, 25)	A1A1	N2

[6]

[6]

[6]

9.	(a)	Vertex is (4, 8)	A1A1	N2	
	(b)	Substituting $-10 = a(7-4)^2 + 8$ a = -2	M1 A1	N1	
	(c)	For <i>y</i> -intercept, $x = 0$ y = -24	(A1) A1	N2	[6]

10.	(a)	p = -1 and $q = 3$ (or $p = 3, q = -1$)	(A1)(A1) (C2)
		(accept (x + 1)(x - 3))	

(b) **EITHER**

by symmetry (M1)

OR

differentiating
$$\frac{dy}{dx} = 2x - 2 = 0$$
 (M1)

OR

Completing the square

 $x^{2} + 2x - 3 = x^{2} - 2x + 1 - 4 = (x - 1)^{2} - 4$

THEN

$$x = 1, y = -4$$
 (so C is $(1, -4)$) (A1)(A1)(C2)(C1)

(M1)

(c)
$$-3$$
 (A1) (C1) (accept $(0, -3)$)

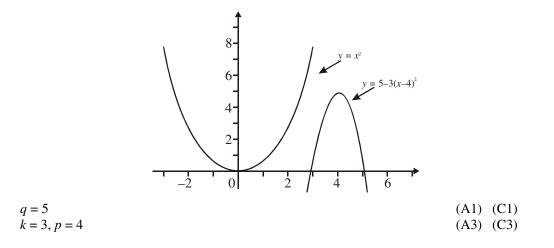
11. One solution \Rightarrow discriminant = 0 (M2) $3^2 - 4k = 0$ (A2) 9 = 4k

$$k = \frac{9}{4} \left(= 2\frac{1}{4}, 2.25 \right)$$
 (A2) (C6)

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.

[6]

[6]



13.	(a)	$f(x) = x^2 - 6x + 14$	
		$f(x) = x^2 - 6x + 9 - 9 + 14$	(M1)
		$f(x) = (x - 3)^2 + 5$	(M1)

(A1)(A1) (b) Vertex is (3, 5)

[4]

[4]

14. y = (x+2)(x-3)(M1) $=x^{2}-x-6$ Therefore, 0 = 4 - 2p + q(A1) (A1)(A1)(C2)(C2) OR $y = x^2 - x - 6$ (C3) OR $\begin{array}{l} 0 = 4 - 2p + q \\ 0 = 9 + 3p + q \\ p = -1, \ q = -6 \end{array}$ (A1) (A1) (A1)(A1)(C2)(C2)

12.

15. Graph of quadratic function.

Expression	+	_	0
a		>	
С		~	
$b^2 - 4ac$			~
b	~		

(A1) (C1)(A1) (C1)

(A1) (C1)

(A1) (C1)

[4]