Quadratics Review KEY

0 min
0 marks

1. (a) $x^{2}-3 x-10=(x-5)(x+2)$
(M1)(A1) (C2)
(b) $x^{2}-3 x-10=0 \Rightarrow(x-5)(x+2)=0$
(M1)
$\Rightarrow x=5$ or $x=-2$
(A1) (C2)
2. $(7-x)(1+x)=0$
$\Leftrightarrow x=7$ or $x=-1$
$B: x=\frac{7+-1}{2}=3$;
$y=(7-3)(1+3)=16$
(M1)
$(\mathrm{A} 1)(\mathrm{C} 1)(\mathrm{C} 1)$
(A1) (C2)
[4]
3. Discriminant $\Delta=b^{2}-4 a c\left(=(-2 k)^{2}-4\right)$
$\Delta>0$
(M2)
Note: Award (M1)(M0) for $\Delta \geq 0$.
$(2 k)^{2}-4>0 \Rightarrow 4 k^{2}-4>0$

EITHER

$4 k^{2}>4\left(k^{2}>1\right)$
OR
$4(k-1)(k+1)>0$
OR
$(2 k-2)(2 k+2)>0$

THEN

$$
k<-1 \text { or } k>1
$$

4. (a) evidence of attempting to solve $f(x)=0$
evidence of correct working
$e g(x+1)(x-2), \frac{1 \pm \sqrt{9}}{2}$
intercepts are $(-1,0)$ and $(2,0)$ (accept $x=-1, x=2)$
A1A1N1N1
(b) evidence of appropriate method
eg $\quad x_{v}=\frac{x_{1}+x_{2}}{2}, x_{v}=-\frac{b}{2 a}$, reference to symmetry
$x_{v}=0.5$
A1 N2
5. (a) $f(x)=3\left(x^{2}+2 x+1\right)-12$

A1

$$
=3 x^{2}+6 x+3-12
$$

$$
=3 x^{2}+6 x-9
$$

(b) (i) vertex is $(-1,-12)$
(ii) $x=-1$ (must be an equation)
(iii) $(0,-9)$
(iv) evidence of solving $f(x)=0$ $e g$ factorizing, formula, correct working
$\operatorname{eg} 3(x+3)(x-1)=0, \quad x=\frac{-6 \pm \sqrt{36+108}}{6}$
$(-3,0),(1,0)$

A1A1 N2
A1 N1
A1 N1
(M1)
A1

A1A1N1N1
(c)

A1A1 N2
Notes: Award Al for a parabola opening upward,
Al for vertex and intercepts in approximately correct positions.
(d) $\quad\binom{p}{q}=\binom{-1}{-12}, t=3 \quad($ accept $p=-1, q=-12, t=3) \quad$ A1A1A1 \quad N3
6. (a) For attempting to complete the square or expanding $y=2(x-c)^{2}+d$,
or for showing the vertex is at $(3,5)$

A1A1 N2

A1 N1
A1 N1
A1 N1
[6]
7. (a) (i) $m=3$
(ii) $p=2$

A2 N 2
A2 N 2
(b) Appropriate substitution
eg $0=d(1-3)^{2}+2,0=d(5-3)^{2}+2,2=d(3-1)(3-5)$
$d=-\frac{1}{2}$
A1 N1
[6]
8. (a) METHOD 1

Using the discriminant $=0\left(q^{2}-4(4)(25)=0\right)$
M1
$q^{2}=400$
$q=20, q=-20$
A1A1 N2
METHOD 2
Using factorizing:
$(2 x-5)(2 x-5)$ and/or $(2 x+5)(2 x+5)$
M1
$q=20, q=-20$
A1A1 N2
(b) $x=2.5$
(c) $(0,25)$

A1A1 N2
[6]
9. (a) Vertex is $(4,8)$
(b) Substituting - $10=a(7-4)^{2}+8$

$$
a=-2
$$

(c) For y-intercept, $x=0$ $y=-24$

A1A1 N2

M1
A1 N1
(A1)
A1 N 2
10. (a) $p=-1$ and $q=3($ or $p=3, q=-1)$
(A1)(A1) (C2)

$$
(\operatorname{accept}(x+1)(x-3))
$$

(b) EITHER
by symmetry

OR

differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2=0$

OR

Completing the square

$$
\begin{equation*}
x^{2}+2 x-3=x^{2}-2 x+1-4=(x-1)^{2}-4 \tag{M1}
\end{equation*}
$$

THEN

$$
x=1, y=-4 \quad(\text { so C is }(1,-4))
$$

$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 2)(\mathrm{C} 1)$
(c) -3
(A1) (C1)

$$
(\operatorname{accept}(0,-3))
$$

11. One solution \Rightarrow discriminant $=0$

$$
\begin{align*}
& 3^{2}-4 k=0 \tag{M2}\\
& \qquad \begin{array}{l}
9=4 k \\
k=\frac{9}{4}\left(=2 \frac{1}{4}, 2.25\right)
\end{array} \tag{A2}
\end{align*}
$$

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.
12.

$$
\begin{aligned}
& q=5 \\
& k=3, p=4
\end{aligned}
$$

(A1) (C1)
(A3) (C3)
13. (a) $f(x)=x^{2}-6 x+14$

$$
\begin{equation*}
f(x)=x^{2}-6 x+9-9+14 \tag{M1}
\end{equation*}
$$

$$
f(x)=(x-3)^{2}+5
$$

(M1)
(b) Verte x is $(3,5)$
(A1)(A1)
14. $y=(x+2)(x-3)$

$$
\begin{equation*}
=x^{2}-x-6 \tag{M1}
\end{equation*}
$$

Therefore, $0=4-2 p+q$
OR
$y=x^{2}-x-6$
OR

$$
\begin{align*}
& 0=4-2 p+q \tag{A1}\\
& 0=9+3 p+q \\
& p=-1, q=-6
\end{align*}
$$

(A1)(A1)(C2)(C2)
(A1)
$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 2)(\mathrm{C} 2)$
15. Graph of quadratic function.

Expression	+	-	0
a		\checkmark	
c		\checkmark	
$b^{2}-4 a c$			\checkmark
b	\checkmark		

(A1) (C1)
(A1) (C1)
(A1) (C1)
(A1) (C1)

