Probability Worksheet

0 min
0 marks

1. (a) Independent (I)
(C2)
(b) Mutually exclusive (M)
(C2)
(c) \quad Neither (N)

Note: Award part marks if the candidate shows understanding of I and/or M eg I $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$ $\mathrm{M} \quad \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) \quad$ (M1)
2. Sample space $=\{(1,1),(1,2) \ldots(6,5),(6,6)\}$
(This may be indicated in other ways, for example, a grid or a tree diagram, partly or fully completed)

(a) $\mathrm{P}(S<8)=\frac{6+5+4+3+2+1}{36}$

$$
\begin{equation*}
=\frac{7}{12} \tag{M1}
\end{equation*}
$$

OR
$\mathrm{P}(S<8)=\frac{7}{12}$
(b) $\quad \mathrm{P}($ at least one 3$)=\frac{1+1+6+1+1+1}{36}$

$$
\begin{equation*}
=\frac{11}{36} \tag{M1}
\end{equation*}
$$

OR

$$
\begin{equation*}
P(\text { at least one } 3)=\frac{11}{36} \tag{A2}
\end{equation*}
$$

(c) $\quad \mathrm{P}($ at least one $3 \mid \mathrm{S}<8)=\frac{\mathrm{P}(\text { at least one } 3 \cap S<8)}{\mathrm{P}(S<8)}$

$$
\begin{align*}
& =\frac{7 / 36}{7 / 12} \tag{A1}\\
& =\frac{1}{3}
\end{align*}
$$

3. (a)

(A1) (C1)
(b) (i) $n(A \cap B)=2$
(A1) (C1)
(ii) $\mathrm{P}(A \cap B)=\frac{2}{36}\left(\right.$ or $\left.\frac{1}{18}\right)$ (allow $\mathbf{f t}$ from (b)(i))
(c) $n(A \cap B) \neq 0$ (or equivalent)
(R1) (C1)
4. $\quad \mathrm{P}($ different colours $)=1-[\mathrm{P}(\mathrm{GG})+\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{WW})]$
$=1-\left(\frac{10}{6} \times \frac{9}{25}+\frac{10}{26} \times \frac{9}{25}+\frac{6}{26} \times \frac{5}{25}\right)$
$=1-\left(\frac{210}{650}\right)$
$=\frac{44}{65}(=0.677$, to 3 sf$)$

OR
$\mathrm{P}($ different colours $)=\mathrm{P}(\mathrm{GR})+\mathrm{P}(\mathrm{RG})+\mathrm{P}(\mathrm{GW})+\mathrm{P}(\mathrm{WG})+\mathrm{P}(\mathrm{RW})+\mathrm{P}(\mathrm{WR}) \quad(\mathrm{A} 1)$
$=4\left(\frac{10}{26} \times \frac{6}{25}\right)+2\left(\frac{10}{26} \times \frac{10}{25}\right)$
$=\frac{44}{65}$ (= $=0.677$, to 3 sf)
(A1)(A1)
(A1) (C4)
5. (a)

	Males	Females	Totals
Unemployed	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$
Employed	$\mathbf{9 0}$	$\mathbf{5 0}$	$\mathbf{1 4 0}$
Totals	$\mathbf{1 1 0}$	$\mathbf{9 0}$	200

Note: Award (A1) if at least 4 entries are correct. Award (A2) if all 8 entries are correct.
(b) (i) $\quad P($ unemployed female $)=\frac{40}{200}=\frac{1}{5}$
(ii) $\quad P($ male I employed person $)=\frac{90}{140}=\frac{9}{14}$
(A1)
6. $\quad \mathrm{P}(\mathrm{RR})=\frac{7}{12} \times \frac{6}{11}\left(=\frac{7}{22}\right)$
$\mathrm{P}(\mathrm{YY})=\frac{5}{12} \times \frac{4}{11}\left(=\frac{5}{33}\right)$
$\mathrm{P}($ same colour $)=\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{YY})$

$$
=\frac{31}{66}(=0.470,3 \mathrm{sf})
$$

Note: Award C2 for $\left(\frac{7}{12}\right)^{2}+\left(\frac{5}{12}\right)^{2}=\frac{74}{144}$.
(M1)(A1)
(M1)(A1)
(M1)
(A1) (C6)
7. (a)

(b)

$$
\begin{align*}
& \text { (i) } 0.4 \times 0.9 \\
& =0.36(\mathrm{~A} 1) \tag{N2}\\
& \text { (ii) } 0.36+0.6 \times 0.8 \quad(=0.36+0.48) \tag{A1}\\
& =0.84(\mathrm{~A} 1) \tag{N1}\\
& \text { (iii) } \frac{\mathrm{P} \text { (red } \cap \text { grows) }}{\mathrm{P} \text { (grows) }} \quad \text { (may be implied) } \tag{M1}\\
& =\frac{0.36}{0.84} \tag{A1}\\
& =0.429\left(\frac{3}{7}\right)
\end{align*}
$$

(A1)
(A1)
(N2) 7
[10]
8. (a) $\frac{3}{4}$

A1 N1

$$
\begin{equation*}
\text { (b) } \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \tag{M1}
\end{equation*}
$$

A1

A1 N2
(c) $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\left(=\frac{\frac{11}{40}}{\frac{3}{4}}\right)$

$$
=\frac{11}{30}(0.367)
$$

9. (a) $\frac{19}{120}(=0.158)$
(b) $35-(8+5+7)(=15)$

Probability $=\frac{15}{120}\left(=\frac{3}{24}=\frac{1}{8}=0.125\right)$
(c) Number studying $=76$

Number not studying $=120-$ number studying $=44$
Probability $=\frac{44}{120}\left(=\frac{11}{30}=0.367\right)$

A1 N3
10. (a) $\mathrm{P}(F \cup S)=1-0.14(=0.86)$ (M1)
Choosing an appropriate formula
$e g \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
Correct substitution
$e g \mathrm{P}(F \cap S)=0.93-0.86$
A1
$\mathrm{P}(F \cap S)=0.07$ AG
Notes: There are several valid approaches. Award (A1)(M1)Al for relevant working using any appropriate strategy eg formula, Venn Diagram, or table.

Award no marks for the incorrect solution
$\mathrm{P}(F \cap S)=1-\mathrm{P}(F)+\mathrm{P}(S)=1-0.93=0.07$
(b) Using conditional probability
$e g \mathrm{P}(F \mid S)\left(=\frac{\mathrm{P}(F \cap S)}{\mathrm{P}(S)}\right)$
$\mathrm{P}(F \mid S)=\frac{0.07}{0.62}$

$$
=0.113
$$

(c) $\quad F$ and S are not independent

EITHER

If independent $\mathrm{P}(F \mid S)=\mathrm{P}(F), 0.113 \neq 0.31$
OR
If independent $\mathrm{P}(F \cap S)=\mathrm{P}(F) \mathrm{P}(S), 0.07 \neq 0.31 \times 0.62(=0.1922) \quad$ R1R1 2
(d) Let $\mathrm{P}(F)=x$
$\mathrm{P}(S)=2 \mathrm{P}(F)(=2 x)$
For independence $\mathrm{P}(F \cap S)=\mathrm{P}(F) \mathrm{P}(S)\left(=2 x^{2}\right)$
Attempt to set up a quadratic equation
eg $\mathrm{P}(F \cup S)=\mathrm{P}(F) \mathrm{P}(S)-\mathrm{P}(F) \mathrm{P}(S), 0.86=x+2 x-2 x^{2}$
$2 x^{2}-3 x+0.86=0$
$x=0.386, x=1.11$
$\mathrm{P}(F)=0.386$

R1R1 N2
A1 N3

A1 N1
(A1) N5

