Probability Worksheet

0 min 0 marks

1.	(a)	Independent (I)	(C2)	
	(b)	Mutually exclusive (M)	(C2)	
	(c)	Neither (N)	(C2)	
		<i>Note:</i> Award part marks if the candidate shows understanding of I and/or M $eg I P(A \cap B) = P(A)P(B)$ $M P(A \cup B) = P(A) + P(B)$	(M1) (M1)	

[6]

 Sample space ={(1, 1), (1, 2) ... (6, 5), (6, 6)} (This may be indicated in other ways, for example, a grid or a tree diagram, partly or fully completed)

(a)
$$P(S < 8) = \frac{6+5+4+3+2+1}{36}$$
 (M1)

$$=\frac{7}{12}$$
(A1)

OR

$$P(S < 8) = \frac{7}{12}$$
(A2)

(b) P (at least one 3) =
$$\frac{1+1+6+1+1+1}{36}$$
 (M1)
= $\frac{11}{36}$ (A1)

OR

$$P (at least one 3) = \frac{11}{36}$$
(A2)

(c) P (at least one 3 | S < 8) =
$$\frac{P(\text{at least one } 3 \cap S < 8)}{P(S < 8)}$$
(M1)
=
$$\frac{\frac{7}{36}}{\frac{7}{12}}$$
(A1)
=
$$\frac{1}{3}$$
(A1)

[7]

(b) (i)
$$n(A \cap B) = 2$$
 (A1) (C1)

(ii)
$$P(A \cap B) = \frac{2}{36} \left(\text{or} \frac{1}{18} \right)$$
 (allow **ft** from (b)(i)) (A1) (C1)

(c)
$$n(A \cap B) \neq 0$$
 (or equivalent) (R1) (C1)

[4]

4. P(different colours) = 1 - [P(GG) + P(RR) + P(WW)] (M1)
= 1 -
$$\left(\frac{10}{10} \times \frac{9}{10} + \frac{10}{10} \times \frac{9}{100} + \frac{6}{100} \times \frac{5}{100}\right)$$
 (A1)

$$\begin{pmatrix} 6 & 25 & 26 & 25 & 26 & 25 \end{pmatrix}$$
(11)
-1 $\begin{pmatrix} 210 \end{pmatrix}$ (A1)

$$= 1 - \left(\frac{1}{650}\right) \tag{A1}$$

$$= \frac{44}{65} (= 0.677, \text{ to } 3 \text{ sf})$$
(A1) (C4)

OR

 $P(\text{different colours}) = P(GR) + P(RG) + P(GW) + P(WG) + P(RW) + P(WR) \quad (A1)$ = $4\left(\frac{10}{26} \times \frac{6}{25}\right) + 2\left(\frac{10}{26} \times \frac{10}{25}\right)$ (A1)(A1)

$$= \frac{44}{65} (= 0.677, \text{ to } 3 \text{ sf})$$
(A1) (C4)

[4]

5. (a)

	Males	Females	Totals
Unemployed	20	40	60
Employed	90	50	140
Totals	110	90	200

Note: Award (A1) if at least 4 entries are correct. Award (A2) if all 8 entries are correct.

(b) (i)
$$P(\text{unemployed female}) = \frac{40}{200} = \frac{1}{5}$$
 (A1)

(ii)
$$P(\text{male I employed person}) = \frac{90}{140} = \frac{9}{14}$$
 (A1)

[4	41
•	_

6.
$$P(RR) = \frac{7}{12} \times \frac{6}{11} \left(= \frac{7}{22} \right)$$
 (M1)(A1)

$$P(YY) = \frac{5}{12} \times \frac{4}{11} \left(= \frac{5}{33} \right)$$
(M1)(A1)
P (same colour) = P(RR) + P(YY) (M1)

$$P(\text{same colour}) = P(RR) + P(YY)$$

$$= \frac{31}{66} (= 0.470, 3 \text{ sf}) \tag{A1}$$

Note: Award C2 for $\left(\frac{7}{12}\right)^2 + \left(\frac{5}{12}\right)^2 = \frac{74}{144}$.

7. (a)

8. (a) $\frac{3}{4}$ A1 N1

(b)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (M1)
 $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
 $= \frac{2}{5} + \frac{3}{4} - \frac{7}{8}$ A1

$$= \frac{11}{40}$$
 (0.275) A1 N2

(c)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \begin{pmatrix} \frac{11}{40} \\ -\frac{3}{4} \end{pmatrix}$$
 A1

$$= \frac{11}{30} (0.367)$$
A1 N1

[6]

9. (a)
$$\frac{19}{120}$$
 (=0.158) A1 N1

(b) 35 - (8 + 5 + 7)(= 15) (M1)

Probability =
$$\frac{15}{120} \left(= \frac{3}{24} = \frac{1}{8} = 0.125 \right)$$
 A1 N2

(c) Number studying = 76(A1)Number not studying = 120 - number studying = 44(M1)Probability =
$$\frac{44}{120} \left(= \frac{11}{30} = 0.367 \right)$$
A1N3

[6]

10.	(a)	$P(F \cup S) = 1 - 0.14 \ (= 0.86)$	(A1)	
		Choosing an appropriate formula	(M1)	
		$eg P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
		Correct substitution		
		$eg P(F \cap S) = 0.93 - 0.86$	A1	
		$P(F \cap S) = 0.07$	AG	N0
		<i>Notes:</i> There are several valid approaches. Awa (A1)(M1)A1 for relevant working using a appropriate strategy eg formula, Venn Diagram, or table.	ırd any	
		Award no marks for the incorrect solution	on	
		$P(F \cap S) = 1 - P(F) + P(S) = 1 - 0.93 =$	0.07	
		TT 1 1.1 1 1.1 1.		
	(b)	Using conditional probability	(M1)	
		$eg P(F \mid S) \left(= \frac{P(F \cap S)}{P(S)} \right)$		
		$P(F \mid S) = \frac{0.07}{0.62}$	(A1)	
		= 0.113	A1	N3
	(c)	F and S are not independent	A1	N1
		EITHER		
		If independent $P(F S) = P(F), 0.113 \neq 0.31$	R1R1	N2
		OR		
		If independent $P(F \cap S) = P(F) P(S), 0.07 \neq 0.31 \times 0.62$ (=	: 0.1922) R1R1	N2
	(d)	Let $P(F) = x$		
		$\mathbf{P}(S) = 2\mathbf{P}(F) \ (= 2x)$	(A1)	
		For independence $P(F \cap S) = P(F)P(S) (= 2x^2)$	(R1)	
		Attempt to set up a quadratic equation	(M1)	
		$eg P(F \cup S) = P(F)P(S) - P(F)P(S), 0.86 = x + 2x - 2x^{2}$		
		$2x^2 - 3x + 0.86 = 0$	A2	
		x = 0.386, x = 1.11	(A1)	
		P(F) = 0.386	(A1)	N5

[16]