Year End Review: Combinatorics and Probability (Units 2 \& 3)

A permutation is an arrangement of objects where order is important (like people or arranging letters). A combination is a selection of objects in which order is not important (like card games and 6-49).

Example 1: Determine the number of ways 6 people can be arranged in a line.

$$
\left.\begin{array}{c}
6!=720 \\
(\text { or } \\
6
\end{array}\right)
$$

Example 2: Determine the number of ways to arrange the letters in MISSIONS.

$$
\frac{8!}{2!3!}=3360
$$

Don't forget about the number of pathways. Determine how many ways there are to go from point A to point B if you can only travel east or north.

The probability that an event will occur is the number of favourable outcomes divided by the total outcomes.

Example 3: Determine the probability of rolling a 5 on a dice and then tossing a tails with a coin.

$$
\left(\frac{1}{6}\right)\left(\frac{1}{2}\right)=\frac{1}{12}
$$

Example 4: If there are 6 white marbles and 4 black marbles in a bag, determine the probability of first choosing a black marble and then a white marble.

$$
\frac{\left({ }_{4} C_{1}\right)\left({ }_{6} C_{1}\right)}{{ }_{10} C_{2}}=0.53
$$

Example 5: Determine the odds in favor and odds against drawing a king out of a deck of cards.

$$
\begin{aligned}
& \text { in furor } \Rightarrow 4: 48 \text { or } 1: 12 \\
& \text { against } \Rightarrow 48: 4 \text { or } 12: 1
\end{aligned}
$$

A Venn diagram uses overlapping circles inside a rectangle to model statements. If two circles do not overlap, they are called mutually exclusive events and have no common outcomes.

Example 6: Students at Abby were surveyed and 54\% had Internet access at home, 44\% have cell phones and 16% have both. What is the probability that a randomly chosen student from Abby will have neither Internet access at home nor cell phones?

$$
\begin{aligned}
100 & =38+16+28+x \\
100 & =82+x \\
18 & =x
\end{aligned}
$$

If huge numbers of possibilities exist, we use combinatorics to help find probabilities.
Example 7: What is the probability of being dealt four 9's in a cribbage hand of 6 cards?

$$
\frac{\left({ }_{4} C_{4}\right)\left({ }_{48} C_{2}\right)}{{ }_{52} C_{6}}=0.0000554
$$

Example 8: What is the probability of guessing the correct entry code if there are three numbers, from $0-9$, and there are no repeated digits in the code?

$$
\frac{1}{{ }_{10} C_{3}}=0.0083
$$

Conditional probability deals with probabilities of an event B , given that event A has occurred. Tree diagrams will help with these questions!!

Example 9: Two cards are drawn without replacement from a shuffled deck of 52 cards. What is the probability that the first card is a black ace and the second card is a red ace?

Example 10: Two machines A and B produce all the items in a factory. Machine A produces 60% of the output. The percentages of defective items produced be these machines are 5% and 8% respectively. Determine the probability that an item was produced by machine A if it is known to be defective?

$$
\begin{aligned}
P(A / D) & =\frac{P(A \text { and } D)}{P(D)} \\
& =\frac{(0.6)(0.05)}{(0.05)(0.6)+(0.08)(0.4)} \\
& =0.484
\end{aligned}
$$

