<u>Year End Review: Polynomial, Exponential, and</u> <u>Logarithmic Functions (Units 6 & 7)</u>

A polynomial function in one variable is a function that contains only the operations of multiplication and addition, with real-number coefficients, whole-number exponents, and two variables. The degree of the function is the greatest exponent of the function. For example, $f(x) = 6x^3 + 3x^2 - 4x + 9$ is a polynomial function of degree 3. More specifically, it is a cubic function due to its degree is 3.

The graphs of polynomial functions of the same degree have common characteristics.

The end behaviour of a graph is the description of the shape of the graph, from left to right, on the coordinate plane. Cartesian grids are divided into four quadrants by the x-axis and y-axis.

Any point where the graph of a function changes from increasing to decreasing or from decreasing to increasing is called a turning point.

The domain is the set of all x values of a graph while the range of a function is the set of all y values of a graph.

The x-intercepts are where the graph crosses the x-axis and the y-intercepts are where the graph crosses the y-axis.

Function	$\mathbf{f}(\mathbf{x}) = 3\mathbf{x} + 2$	$g(x) = x^3 + x^2 + 2x - 2$	
Degree		3	
Number of x-intercepts	1	1	
Y-intercept	2	-2	
End Behaviour	$\amalg \rightarrow I$	IJ→I	
Domain	XETR	XETR	
Range	YEIR	YETR-	
Number of Turning Points	0	2	

Example 1: Complete the following chart:

An exponential function is of the form $y = a(b)^x$ where $a \neq 0$, b > 0, and $b \neq 1$. The graphs of exponential function are very unique.

The function $y = log_{10}x$ is equivalent to $x = 10^{y}$, so a logarithm is an exponent. The meaning of $log_{10}x$ is "the exponent that must be applied to base 10 to get the value of x". For example, $log_{10}100 = 2$.

The expression $\log_{10}x$ is known as the common logarithm or a logarithm with a base of 10. The expression is often written without the 10, so the two functions $y = \log_{10}x$ and $y = \log x$ are equivalent.

The symbol e is a constant known as Euler's number. It is an irrational number that equals 2.718.... A logarithm with base e is called the natural logarithm and is written as lnx.

Function	$y = 5(2)^{x}$	$y = 4(1/2)^x$	$y = -4\log x$	y = 13lnx
Number of x- Intercepts	0	0		1
Y-intercept	5	4	None	rone
End Behaviour] ¬ I	$\mathbb{I} \rightarrow \mathbb{I}$	Ţ > Ţ	V→I
Domain	XER	XER	07x	DCX
Range	y70	970	YETL	YER
Increasing/ Decreasing	ÎNC	dec	dec	122

Example 2: Complete the following chart.

When determining an equation that best fits the data, a graphing calculator must be used.

Example 3: Determine the equation of the exponential regression function of the following data.

X	0	1	2	3	4
У	0.0	2.1	4.2	6.3	8.4

y= 1.48 (1.58)