Year End Review: Polynomial, Exponential, and

Logarithmic Functions (Units 6 \& 7)

A polynomial function in one variable is a function that contains only the operations of multiplication and addition, with real-number coefficients, whole-number exponents, and two variables. The degree of the function is the greatest exponent of the function. For example, $f(x)=6 x^{3}+3 x^{2}-4 x+9$ is a polynomial function of degree 3. More specifically, it is a cubic function due to its degree is 3 .

The graphs of polynomial functions of the same degree have common characteristics.
The end behaviour of a graph is the description of the shape of the graph, from left to right, on the coordinate plane. Cartesian grids are divided into four quadrants by the x axis and y-axis.

Any point where the graph of a function changes from increasing to decreasing or from decreasing to increasing is called a turning point.

The domain is the set of all x values of a graph while the range of a function is the set of all y values of a graph.

The x -intercepts are where the graph crosses the x -axis and the y -intercepts are where the graph crosses the y-axis.

Example 1: Complete the following chart:

Function	$\mathbf{f}(\mathbf{x})=\mathbf{3 x}+2$	$\mathbf{g}(\mathbf{x})=\mathbf{x}^{3}+\mathrm{x}^{2}+2 \mathrm{x}-2$
Degree	1	3
Number of x-intercepts	1	1
Y-intercept	2	-2
End Behaviour	III $\rightarrow I$	$I \mathbb{I} \rightarrow I$
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}$	$y \in \mathbb{R}$
Number of Turning Points	0	2

An exponential function is of the form $y=a(b)^{x}$ where $a \neq 0, b>0$, and $b \neq 1$. The graphs of exponential function are very unique.

The function $\mathrm{y}=\log _{10} \mathrm{x}$ is equivalent to $\mathrm{x}=10^{\mathrm{y}}$, so a logarithm is an exponent. The meaning of $\log _{10} \mathrm{x}$ is "the exponent that must be applied to base 10 to get the value of x ". For example, $\log _{10} 100=2$.

The expression $\log _{10} \mathrm{x}$ is known as the common logarithm or a logarithm with a base of 10. The expression is often written without the 10 , so the two functions $\mathrm{y}=\log _{10} \mathrm{x}$ and $y=\log x$ are equivalent.

The symbol e is a constant known as Euler's number. It is an irrational number that equals $2.718 \ldots$. A logarithm with base e is called the natural logarithm and is written as $\ln x$.

Example 2: Complete the following chart.

Function	$\mathrm{y}=5(2)^{x}$	$\mathrm{y}=4 \mathrm{C}^{(1 / 2)^{x}}$	$y=-4 \log x$	$y=13 \ln x$
Number of \mathbf{x} Intercepts	0	0	1	1
Y-intercept	5	4	none	none
End Behaviour	$I \rightarrow I$	$I \mathrm{I}$	$I \rightarrow I$	IV \rightarrow I
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$	$x>0$	$x>0$
Range	$y>0$	$y>0$	$y \in \pi$	$y \in \mathbb{R}$
Increasing/ Decreasing	inc	dec	dec	inc

When determining an equation that best fits the data, a graphing calculator must be used.
Example 3: Determine the equation of the exponential regression function of the following data.

\mathbf{x}	0	1	2	3	4
\mathbf{y}	0.0	2.1	4.2	6.3	8.4

$$
y=1,48(1,58)^{x}
$$

