1. $17+27+37+\ldots+417$
$17+(n-1) 10=417$
(M1)
$10(n-1)=400$
$n=41$
$S_{41}=\frac{41}{2}(2(17)+40(10))$
$=41(17+200)$
$=8897$

OR

$$
\begin{align*}
& S_{41}=\frac{41}{2}(17+417) \tag{M1}\\
& =\frac{41}{2}(434) \\
& =8897
\end{align*}
$$

(A1) (C4)
[4]
2. (a) $3,6,9$

A1 N1
(b) (i) Evidence of using the sum of an AP
eg $\frac{20}{2} 2 \times 3+(20-1) \times 3$
$\sum_{n=1}^{20} 3 n=630$
A1 N1
(ii) METHOD 1

Correct calculation for $\sum_{n=1}^{100} 3 n$
eg $\frac{100}{2}(2 \times 3+99 \times 3), 15150$
Evidence of subtraction
eg 15150-630
$\sum_{n=21}^{100} 3 n=14520$
A1 N2

METHOD 2

Recognising that first term is 63 , the number of terms is 80 (A1)(A1)
eg $\frac{80}{2}(63+300), \frac{80}{2}(126+79 \times 3)$

$$
\sum_{n=21}^{100} 3 n=14520
$$

$$
\text { A1 } \quad \mathrm{N} 2
$$

3. $S=\frac{u_{1}}{1-r}=\frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$
$=\frac{2}{3} \times \frac{3}{5}$
$=\frac{2}{5}$
(A1) (C4)
4. (a) $u_{4}=u_{1}+3 d$ or $16=-2+3 d$
(M1)
(A1) (C3)
(b) $\quad u_{n}=u_{1}+(n-1) 6$ or $11998=-2+(n-1) 6$
$n=\frac{11998+2}{6}+1$
$=2001$
(A1) (C3)
[6]
5. (a) (i) \quad Area $\mathrm{B}=\frac{1}{16}, \quad$ area $\mathrm{C}=\frac{1}{64}$
(A1)(A1)
(ii) $\frac{\frac{1}{16}}{\frac{1}{4}}=\frac{1}{4} \frac{\frac{1}{64}}{\frac{1}{16}}=\frac{1}{4}$ (Ratio is the same.)
(iii) Common ratio $=\frac{1}{4}$
(A1) 5
(b) (i) Total area $\left(S_{2}\right)=\frac{1}{4}+\frac{1}{16}=\frac{5}{16}=(=0.3125)(0.313,3 \mathrm{sf})$
(ii) Required area $=S_{8}=\frac{\frac{1}{4}\left(1-\left(\frac{1}{4}\right)^{8}\right)}{1-\frac{1}{4}}$

$$
\begin{aligned}
& =0.3333282(471 \ldots) \\
& =0.333328(6 \mathrm{sf})
\end{aligned}
$$

(A1)
(A1) 4

Note: Accept result of adding together eight areas correctly.
(c) Sum to infinity $=\frac{\frac{1}{4}}{1-\frac{1}{4}}$

$$
\begin{equation*}
=\frac{1}{3} \tag{A1}
\end{equation*}
$$

[11]
6. For using $u_{3}=u_{1} r^{2}=8$

$$
\begin{align*}
8 & =18 r^{2} \tag{A1}\\
r^{2} & =\frac{8}{18}\left(=\frac{4}{9}\right) \\
r & = \pm \frac{2}{3} \tag{A1}
\end{align*}
$$

$$
S_{\infty}=\frac{u_{1}}{1-r}
$$

$$
S_{\infty}=54, \frac{54}{5}(=10.8)
$$

$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 3)(\mathrm{C} 3)$
[6]
7. (a) evidence of dividing two terms
eg $-\frac{1800}{3000},-\frac{1800}{1080}$

$$
r=-0.6
$$

A1 N2
(b) evidence of substituting into the formula for the $10^{\text {th }}$ term
eg $u_{10}=3000(-0.6)^{9}$
$u_{10}=-30.2$ (accept the exact value -30.233088$)$
A1 N2
(c) evidence of substituting into the formula for the infinite sum
e.g. $S=\frac{3000}{1.6}$
$S=1875$
8. $\quad\binom{10}{3} 2^{7}(a x)^{3} \quad\left(\operatorname{accept}\binom{10}{7}\right)$

$$
\begin{equation*}
\binom{10}{3}=120 \tag{A1}
\end{equation*}
$$

(A1)(A1)(A1)
$a^{3}=27$
$a=3$

$$
\begin{equation*}
120 \times 2^{7} a^{3}=414720 \tag{M1}
\end{equation*}
$$

(A1) (C6)
Note: Award (AI)(AI)(AO) for $\binom{10}{3} 2^{7}$ ax x^{3}. If this leads to the answer $a=27$, do not award the final (Al).
9. The constant term will be the term independent of the variable x.

$$
\begin{align*}
& \left(x-\frac{2}{x^{2}}\right)^{9}=x^{9}+9 x^{8}\left(\frac{-2}{x^{2}}\right)+\ldots+\binom{9}{3} x^{6}\left(\frac{-2}{x^{2}}\right)^{3}+\ldots+\left(\frac{-2}{x^{2}}\right)^{9} \tag{M1}\\
& \binom{9}{3} x^{6}\left(\frac{-2}{x^{2}}\right)^{3}= \tag{A1}\\
& =84 x^{6}\left(\frac{-8}{x^{6}}\right) \tag{A1}\\
& =-672
\end{align*}
$$

10. Required term is $\binom{8}{5}(3 x)^{5}(-2)^{3}$

Therefore the coefficient of x^{5} is $56 \times 243 \times-8$ $=-108864$
(A1) (C4)
[4]
11. (a) Ashley

$$
\begin{align*}
& \text { AP } \quad 12+14+16+\ldots \text { to } 15 \text { terms } \tag{M1}\\
& S_{15}=\frac{15}{2}[2(12)+14(2)] \tag{M1}\\
& =15 \times 26 \\
& =390 \text { hours }
\end{align*}
$$

(A1) 3
(b) Billie

$$
\begin{equation*}
\text { GP } \quad 12,12(1.1), 12(1.1)^{2} \ldots \tag{M1}
\end{equation*}
$$

(i) In week $3,12(1.1)^{2}$

$$
\begin{equation*}
=14.52 \text { hours } \tag{A1}
\end{equation*}
$$

(ii) $\quad S_{15}=\frac{12\left[(1.1)^{15}-1\right]}{1.1-1}$ $=381$ hours (3 sf)
(A1) 4

$$
\begin{align*}
& 12(1.1)^{n-1}>50 \\
& \quad(1.1)^{n-1}>\frac{50}{12} \\
& (n-1) \ln 1.1>\ln \frac{50}{12} \\
& \quad \ln \frac{50}{12} \\
& n-1>\frac{\ln 1.1}{} \\
& n-1>14.97 \\
& \quad n>15.97 \\
& \Rightarrow \text { Week } 16 \\
& \text { OR } \\
& 12(1.1)^{n-1}>50 \\
& \text { By trial and error } \\
& 12(1.1)^{14}=45.6,12(1.1)^{15}=50.1 \\
& \Rightarrow n-1=15 \\
& \Rightarrow n=16(\text { Week } 16)
\end{align*}
$$

