Now we will look at a famous mathematical pattern know as Pascal's triangles.

These numbers can also be found using combinations, or the ${ }_{n} \mathrm{C}_{\mathrm{r}}$ function on the GDC.
${ }_{4} \mathrm{C}_{0}=1$
${ }_{4} \mathrm{C}_{1}=4$
${ }_{4} \mathrm{C}_{2}=6$
${ }_{4} C_{3}=4$
${ }_{4} \mathrm{C}_{4}=1$
$\binom{n}{r}$, or ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ represents the number of ways n items can be taken r at a time.

The number of combinations of n items taken r at a time is found by:

$$
\frac{n!}{r!(n-r)!}, \text { where } \mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \ldots \times 1
$$

Example 1: Find the value of $\binom{10}{5}$ using the formula, and check with your GDC.

$$
=\frac{10!}{5!(10-5)!}=252
$$

Investigation - Patterns in Polynomials

Expand each of the following expressions.

1. $(a+b)^{1}$
$a+b$
2. $(a+b)^{2}$
$a^{2}+2 a b+b^{2}$
3. $(a+b)^{3}$
4. $(a+b)^{4}$
$a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

Do you notice any similarities to Pascal's triangle? Based on these pattern, predict what the expansion of $(a+b)^{7}$ might be. Coefficients are from Pascal's triangle.

$$
a^{7}+7 a^{6} b+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a b^{6}+b^{7}
$$

The binomial theorem states that for any power of a binomial, where $n \varepsilon N$,

$$
(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} a^{0} b^{n}
$$

Example 2: Use the binomial theorem to expand $(x+4)^{4}$. Write your answer in

$$
\begin{aligned}
& =\binom{4}{0} x^{4} 4^{0}+\binom{4}{1} x^{3} \cdot 4^{\prime}+\binom{4}{2} x^{2} \cdot 4^{2}+\binom{4}{3} x^{1} \cdot 4^{3}+\binom{4}{4} x^{0} \cdot 4^{4} \\
& =x^{4}+16 x^{3}+96 x^{2}+256 x+256
\end{aligned}
$$

Example 3: Use the binomial theorem to expand $(3 x-5 y)^{3}$. Write your answer in $=\binom{3}{0}(3 x)^{3}(-5 y)^{0}+\binom{3}{1}(3 x)^{2}(-5 y)^{1}+\binom{3}{2}(3 x)^{\prime}(-5 y)^{2}+\binom{3}{3}(3 x)^{0}(-5 y)^{3}$
$=27 x^{3}-135 x^{2} y+225 x y^{2}-125 y^{3}$

Example 4: Find the x^{3} term in the expansion of $(5 \mathrm{x}-2)^{9}$.

$$
\begin{aligned}
& \binom{9}{6}(5 x)^{3}(-2)^{6} \\
= & (84)\left(125 x^{3}\right)(64) \\
= & 672000 x^{3}
\end{aligned}
$$

Example 5: In the expansion of $(2 x+1)^{n}$, the coefficient of the x^{3} term is 80 . Find the value of n.
$\binom{n}{3}(2 x)^{3}\left(1^{n-3}\right)=80 x^{3}$

$$
\begin{aligned}
& \frac{n!}{3!(n-3)!}\left(8 x^{3}\right)(1)=80 x^{3} \\
& \frac{\left.n(n-1)(n-2))_{n}-3\right) \ldots}{6(n-3)(n-4)!}\left(8 x^{3}\right)=80 x^{3} \\
& n(n-1)(n-2)=60 \\
& \quad \text { From GDC zeros } \Rightarrow n=5
\end{aligned}
$$

