Now we will look at a famous mathematical pattern know as Pascal's triangles.

These numbers can also be found using **combinations**, or the ${}_{n}C_{r}$ function on the GDC.

$${}_{4}C_{0} = 1$$
 ${}_{4}C_{1} = 4$ ${}_{4}C_{2} = 6$ ${}_{4}C_{3} = 4$ ${}_{4}C_{4} = 1$
 $\binom{n}{r}$, or ${}_{n}C_{r}$ represents the number of ways n items can be taken r at a time.

The number of combinations of n items taken r at a time is found by:

$$\frac{n!}{r!(n-r)!}, \text{ where } n! = n \ge (n-1) \ge (n-2) \ge \dots \ge 1$$

Example 1: Find the value of $\begin{pmatrix} 10\\5 \end{pmatrix}$ using the formula, and check with your GDC.
 $=\frac{lo!}{5!(lo-5)!} = 252$

Investigation – Patterns in Polynomials
Expand each of the following expressions.
1.
$$(a + b)^1$$

 $a + b$
3. $(a + b)^3$
 $a^2 + 2ab + b^2$
3. $(a + b)^3$
 $a^3 + 3a^2b + 3ab^2 + b^3$
Do you notice any similarities to Pascal's triangle? Based on these pattersn, predict what the expansion of $(a + b)^7$ might be. Coefficients are from Pascal's triangle.
 $a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7$

The binomial theorem states that for any power of a binomial, where n ε N,

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n}a^{0}b^{n}$$

Example 2: Use the binomial theorem to expand $(x + 4)^4$. Write your answer in $= \binom{4}{0} \chi^4 4^0 + \binom{4}{1} \chi^{3.4} 4' + \binom{4}{2} \chi^{2.4} 4' + \binom{4}{3} \chi^{.4} 4' \binom{4}{4} \chi^{0.4} 4'$ $= \chi^4 + 16\chi^3 + 96\chi^2 + 256\chi + 256$

Example 3: Use the binomial theorem to expand
$$(3x - 5y)^3$$
. Write your answer in

$$= \binom{3}{6} \binom{3x}{-5y}^3 \binom{-5y}{+} \binom{3}{1} \binom{3x}{-5y}^2 + \binom{3}{2} \binom{3x}{-5y}^2 + \binom{3}{3} \binom{3x}{-5y}^6 \binom{-5y}{-5y}^3$$

$$= 27x^3 - 135x^2y + 225xy^2 - 125y^3$$

Example 4: Find the x^3 term in the expansion of $(5x - 2)^9$.

$$\binom{9}{6}(5x)^{3}(-2)^{6} = (84)(125x^{3})(64) = 672000x^{3}$$

Example 5: In the expansion of $(2x + 1)^n$, the coefficient of the x^3 term is 80. Find the value of n.

$$\binom{n}{3}\binom{2x}{1}\binom{n^{-3}}{1} = 80x^{3}$$

$$\frac{n!}{3!(n-3)!} (8x^{3})(1) = 80x^{3}$$

$$\frac{n(n-1)(n-2)(n-2)}{6(n-1)(n-2)} = 60$$
From GDC zeros => n=5