
Lesson Notes 7-9   Pascal’s Triangle & the Binomial Expansion 

 

Now we will look at a famous mathematical pattern know as Pascal’s triangles.   
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These numbers can also be found using combinations, or the nCr function on the GDC. 

 

4C0 = 1  4C1 = 4  4C2 = 6  4C3 = 4  4C4 = 1 
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, or nCr represents the number of ways n items can be taken r at a time. 

 

 

The number of combinations of n items taken r at a time is found by:   

 
n!

r! n − r( )! , where n! = n x (n – 1) x (n – 2) x … x 1 

 

Example 1:  Find the value of using the formula, and check with your GDC. 

 

 

 

 

 

Investigation – Patterns in Polynomials 

Expand each of the following expressions. 

 1.  (a + b)
1
     2.  (a + b)
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 3.  (a + b)
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     4.  (a + b)
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Do you notice any similarities to Pascal’s triangle?  Based on these pattersn, predict what 

the expansion of (a + b)
7
 might be. 
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The binomial theorem states that for any power of a binomial, where n ε N, 
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Example 2:    Use the binomial theorem to expand (x + 4)
4
.  Write your answer in  

   simplest form. 

 

 

 

 

 

 

Example 3:   Use the binomial theorem to expand (3x – 5y)
3
.  Write your answer in  

   simplest form. 

 

 

 

 

 

 

 

 

Example 4:  Find the x
3
 term in the expansion of (5x – 2)

9
. 

 

 

 

 

 

 

 

 

 

Example 5:   In the expansion of (2x + 1)
n
, the coefficient of the x

3
 term is 80.  Find the  

   value of n. 


