If a scatter plot seems to follow a curved trend, then there may be a quadratic or cubic relationship between the data instead of a linear relationship. To determine the curve of best fit the same procedures are used as in last lesson.

Example 1: A pebble falls from a Cliffside into the river 30 m below. This table gives the height of the pebble as it falls.

Time (s)	\times	0	0.5	1	1.2	1.5	2.0
Height (m)	y 30.00	28.77	25.11	22.97	18.98	10.42	

a) Use quadratic regression to determine the equation of the curve of best fit.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=-4.9 x^{2}+0.015 x+30
\end{aligned}
$$

b) Use your equation to determine the height of the pebble after 1.25 s .

$$
\begin{aligned}
y & =-4.9\left(1.25^{2}\right)+0.015(1.25)+30 \\
& =22.36
\end{aligned}
$$

c) When does the pebble hit the river, to the nearest hundredth of a second?

$$
\begin{aligned}
& 0=-4.9 x^{2}+0.015 x+30 \\
& x=2.5
\end{aligned}
$$

Example 2: A biochemist is studying the growth of recently discovered bacteria. She collects the data shown.

Day	1	2	3	4	5	6	7	8
Mass (g)	3.2	4.6	5.4	4.2	5.5	7.1	8	9.2

a) Use cubic regression to determine the equation of the curve of best fit for the data.

$$
y=0.023 x^{3}-0.23 x^{2}+1.26 x+2.44
$$

b) Estimate the mass of the bacteria on Day 11 .

$$
19.04
$$

