Independent events are dealt with in the same fashion as with conditional probabilities. A tree diagram is used to assist with what is asked.

Example 1: Suppose 0.6% of the population have leukemia and the medical test for leukemia is only 97% accurate.

a) What is the probability that a person will test negative?

$$
(0.006)(0.03)+(0.97)(0.994)=0.964
$$

b) What is the probability that a person who tests negative actually does have leukemia?

$$
P(L \mid N)=\frac{P(L \text { and } N)}{P(N)}=\frac{(0.006)(0.03)}{0.964}=0.00019
$$

Example 2: Bag A containswhite candies and 8 red candies. Bag B contains 4 white candies and 6 red candies. A fair die is rolled and if a prime number comes up, a candy is randomly selected from Bag A. If a prime number is not rolled, candy from Bag B is chosen.

a) What is the probability of selecting a red candy?

$$
\left(\frac{4}{6}\right)\left(\frac{8}{13}\right)+\left(\frac{2}{6}\right)\left(\frac{6}{10}\right)=0.6134
$$

b) If a red candy is selected, what is the probability that this candy came from Bag B?

$$
P(B / R)=\frac{P(B \text { and } R)}{P(R)}=\frac{\left(\frac{2}{6}\right)\left(\frac{6}{10}\right)}{0.6134}=0.326
$$

c) Given that a white candy is selected, what is the probability that this candy came from Bag A?

$$
P(A \mid W)=\frac{P(A \text { and } W)}{P(W)}=\frac{\left(\frac{4}{6}\right)\left(\frac{5}{13}\right)}{\left(\frac{4}{6}\right)\left(\frac{5}{13}\right)+\left(\frac{2}{6}\right)\left(\frac{4}{10}\right)}=0.658
$$

