Lesson Notes 8-5

 $y = 2\sin(4(x - 30^{\circ})) + 1$ Midline Y=1 amplitude 2 range -14753 period 90 10.72 10 8 6 2 0 5401 630" -2

Using a graphing calculator, graph the following equations on the grid provided.

A sinusoidal function of the form y = asinb(x - c) + d or y = acosb(x - c) + d has the following characteristics:

- The value of \triangle is the amplitude
- The value of <u>b</u> is the number of cycles in 360°, or 2π .

The period is 360° /b, or 2π /b.

- The value of _____ indicates the horizontal translation that has been applid to the graph of y = sinx or y = cosx. The graph is shifted to the right if c is positive and to the left if c is negative.
- The equation of the midline is y =_____.
- The maximum value is $d \alpha$ and the minimum value is $d \alpha$
- **Example 1:** Consider the graph of $y = 5 \cos(\frac{1}{2}x) 3$. Describe the graph of the function by stating the amplitude, equation of the midline, range, and period, as well as the relevant horizontal translation of y = cosx.

$$anp=5$$
 mid. = y=-3 range -8 = y = 2
 T T
 $-3-5$ -3+5
period = $\frac{360}{\frac{1}{5}} = 720^{\circ}$ ho shift (x)

Example 2: Consider the graph of $y = 4\cos 3(x - 60^{\circ})$. Describe the graph of the function by stating the amplitude, equation of the midline, range, and period, as well as the relevant horizontal translation of $y = \cos x$.

$$a_{mp}: 4 \qquad \text{midline: } Y=0 \qquad \text{range: - } Y \leq 4$$

$$period: \frac{360}{3} = 120 \qquad \text{hor. shift: } 60 \quad \text{right}$$

Example 3: Which equation describes this graph best?

(i)
$$y = 4\sin^3(x - 30^\circ) + 1$$

(ii) $y = 3\sin^3(x - 30^\circ) + 1$
(iii) $y = 4\sin^2(x + 30^\circ) + 2$
(iv) $y = 2\sin^3(x - 180^\circ) + 4$

