Using a graphing calculator, graph the following equations on the grid provided.

$$
y=2 \sin \left(4\left(x-30^{\circ}\right)\right)+1
$$

$y=3 \cos \left(2\left(x+90^{\circ}\right)-\frac{2}{3}\right.$

$$
y=-2
$$

A sinusoidal function of the form $y=\operatorname{asinb}(x-c)+d$ or $y=\operatorname{acosb}(x-c)+d$ has the following characteristics:

- The value of \qquad is the amplitude
- The value of \qquad is the number of cycles in 360°, or 2π.

The period is $360^{\circ} / \mathrm{b}$, or $2 \pi / \mathrm{b}$.

- The value of $C \quad$ indicates the horizontal translation that has been applid to the graph of $y=\sin x$ or $y=\cos x$. The graph is shifted to the right if c is positive and to the left if c is negative.
- The equation of the midline is $\mathrm{y}=$ \square .
- The maximum value is \qquad and the minimum value is \qquad .

Example 1: Consider the graph of $y=5 \cos (1 / 2 x)-3$. Describe the graph of the function by stating the amplitude, equation of the midline, range, and period, as well as the relevant horizontal translation of $y=\cos x$.

$$
\begin{aligned}
& a_{m p}=5 \quad \text { mid. }=y=-3 \quad \text { range } \quad-8 \leq y \leq 2 \\
& r-3-5 \quad
\end{aligned}
$$

Example 2: Consider the graph of $y=4 \cos 3\left(x-60^{\circ}\right)$. Describe the graph of the function by stating the amplitude, equation of the midline, range, and period, as well as the relevant horizontal translation of $y=\cos x$.
amp: 4
mindiu: $y=0$ range: $-4 \leq y \leq 4$

$$
\text { frill: } \frac{360}{3}=120 \text { hor. shift: } 60^{\circ} \text { right }
$$

Example 3: Which equation describes this graph best?
i) $y=4 \sin 3\left(x-30^{\circ}\right)+1$
(ii) $\mathrm{y}=3 \sin 3\left(\mathrm{x}-30^{\circ}\right)+1$
iii) $y=4 \sin 2\left(x+30^{\circ}\right)+2$
(if) $\mathrm{y}=2 \sin 0.5\left(\mathrm{x}-180^{\circ}\right)+4$

