It is important to know the difference between a permutation and a combination. The two formulae are:

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

A permutation is an arrangement of a set of objects where order is important. A combination is a selection from a group of objects, where order is not important.

Example 1: With Lotto 6/49, there is a selection of 6 numbers from 49. The Lottery Corporation jumbles 49 numbered balls in a cage and allows 6 balls to drop out. The order in which the six numbers appears is not important. Eventually, the numbers are rearranged from lowest to highest. How many arrangements of 6 numbers are possible?

$$
{ }_{49} C_{C}=13,983,816
$$

Example 2: How many different groups of 4 people can be chosen from a group of 30 ?

$$
30 C_{4}=27405
$$

Example 3: If the 4 people chosen were getting titles $\begin{gathered}\text { tiles. } \\ \text { President, Vice-President, }\end{gathered}$ Treasurer, and Secretary, how many different groups can be formed from a group of 30 people?

$$
{ }_{30} P_{4}=657,720
$$

Example 4: There are 12 women and 8 men interested in committee work.
a) Calculate the number of ways that a committee of 5 people can be chosen from this group if there must be exactly 3 women?

$$
\left({ }_{12} C_{3}\right)\left({ }_{8} C_{2}\right)=6160
$$

b) Calculate the number of different groups of 5 that can be formed if there must be at least 3 women in each group.

$$
\begin{gathered}
\left(\frac{3 w}{\frac{3 w}{}}+\frac{5 w}{\left(C_{12} C_{5}\right)\left(C_{8} C_{0}\right)}\left(C_{8} C_{1}\right)\right. \\
6160+792 \\
=10912
\end{gathered}
$$

Example 5: Solve for $\mathrm{n}: \quad 4\left({ }_{\mathrm{n}} \mathrm{C}_{2}\right)=2\left({ }_{\mathrm{n}} \mathrm{C}_{1}\right)$

$$
\begin{aligned}
& \frac{4 n!}{2!(n-2)!}=\frac{2 n!}{1!(n-1)!} \\
& \frac{4 n(n-1)(n-2) \ldots}{2(n-2)(n-3) \ldots}=\frac{2 n(n-1)(n-2) \ldots}{(n-1)(n-2)(n-3) \ldots} \\
& 2 n(n-1)=2 n \\
& 2 n^{2}-2 n=2 n \\
& 2 n^{2}-4 n=0 \\
& 2 n(n-2)=0 \\
& \frac{2 n=0}{2}=\frac{0}{2}!n=0 \\
& n=0 ;
\end{aligned}
$$

