Lesson Notes 6-4

Modeling Data With a Line of Best Fit

A scatter plot is a set of points on a grid, used to visualize a relationship or possible trend in the data. If the points on a scatter plot seem to follow a linear trend (ie. form approximately a line), then there may be a linear relationship between the data. Technology can then be used to determine and graph the equation of the line of best fit.

A line of best fit can be used to predict values that are not recorded or plotted. To do so, read values from the line of best fit on a scatter plot, or use the equation of the line of best fit.

Example 1: The winning times for the men's 20 km biathlon in the Winter Olympics from 1964 to 2010 are shown in the table.

/ Independent						
Year 🗶	1964	1968	1972	1976	1980	1984
Winning	80.4	73.8	75.9	74.2	68.3	71.9
Time 🗸						
(min) '	- alpendat	·				
Year	1988	1992	1994	1998	2006	2010
Winning	56.6	57.6	57.4	56.2	54.3	48.4
Time						
(min)						

a) Use technology to determine the equation of the line of best fit.

 $Y = -0.68 \times + 1419.4$

STAT > EDIT enter data, Quit STAT > CALC > Linkag Enter twice

b) Determine a possible winning time for the event in the 2002 Olympics.

$$Y = -0.68(2002) + 1419.4 = 58.04$$

Example 2: A city council needs to buy 15 000 L of liquid de-icer for the coming winter. One supplier provides the following quote:

• 13 kL for \$1.05/L
• 14 kL for \$0.95/L
• 16 kL for \$0.84/L

a)Use linear regression to determine the equation of the line of best fit for the data

Y=-0.064x+1.86

b) What price should the city expect to pay per litre? \bigcirc 064/2

c) What price will be paid in all?