Rearranging the last formula, we have CONDITIONAL PROBABILITY of Event B (or Event A):

$$
P(B \mid A)=\frac{P(\text { Aand } B)}{P(A)} \quad \text { or } \quad P(A \mid B)=\frac{P(\text { BandA })}{P(B)}
$$

Example 1: Since $P(A \mid B)=\frac{P(\text { Band } A)}{P(B)}$
a) If $\mathrm{P}(\mathrm{A}$ and B$)=0.22$ and $\mathrm{P}(\mathrm{B})=0.79, \mathrm{P}(\mathrm{AlB})=$ \qquad

$$
P(A \mid B)=\frac{0.22}{0.79}=0.28
$$

b) If $\mathrm{P}(\mathrm{AlB})=0.59$, and $\mathrm{P}(\mathrm{B})=0.75, \mathrm{P}(\mathrm{A}$ and B$)=$ \qquad
$(0.75) 0.59=\frac{x}{0.75}(0.75) \quad x=0.44$
c) If $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0.4$, and $\mathrm{P}(\mathrm{A}$ and B$)=0.14, \mathrm{P}(\mathrm{B})=0.35$

$$
0.4=\frac{0.14}{x} \quad \frac{0.4 x}{0.4}=\frac{0.14}{0.4}
$$

Example 2: Pick two cards, with replacement, from a standard 52 card deck.

a) What is the probability that the first card is black and the second card is a club?

$$
\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)=\frac{1}{8}
$$

b) What is the probability that the first card is red and the second card is a face card?

$$
\left(\frac{1}{2}\right)\left(\frac{3}{13}\right)=\frac{3}{26}
$$

Example 3: Pick two cards, without replacement, from a standard 52 card deck.

a) What is the probability that the first card is red and the second card is a club?

$$
\left(\frac{1}{2}\right)\left(\frac{13}{51}\right)=\frac{13}{102}
$$

b) What is the probability that the first card is red and the second card is a diamond?

$$
\left(\frac{1}{4}\right)\left(\frac{13}{51}\right)^{3}+\left(\frac{1}{4}\right)\left(\frac{12}{51}\right)^{2}=\frac{25}{204} \text { OR } 0.1225
$$

Example 4: Three machines A, B, and C produce respectively $50 \%, 30 \%$, and 20% of the items produced daily by a manufacturing company. The percentages of defective items produced by the machines are respectively $5 \%, 2 \%$, and 1%.

a) What is the probability that an item selected at random from the daily output is defective?

$$
(0.5)(0.05)+(0.3)(0.02)+(0.2)(0.01)=0.033
$$

b) What is the probability that an item came from machine C given that it is defective?

$$
P(C \mid D)=\frac{P(c \mathrm{cad} D)}{P(D)}=\frac{(0.2 Y 0.01)}{0,063}=0.0066
$$

