The function $y=\log _{10} x$ is equivalent to $x=10^{y}$, so a logarithm is an exponent. The meaning of $\log _{10} x$ is "the exponent that must be applied to base 10 to get the value of x ". For example, $\log _{10} 100=2$.

The expression $\log _{10} \mathrm{x}$ is known as the common logarithm or a logarithm with a base of 10 . The expression is often written without the 10 , so the two functions $\mathrm{y}=\log _{10} \mathrm{x}$ and $y=\log x$ are equivalent.

The symbol e is a constant known as Euler's number. It is an irrational number that equals $2.718 \ldots$. A logarithm with base e is called the natural logarithm and is written as lnx.

Complete the table of values for the following functions and graph the function on the grid provided.

\mathbf{x}	$\mathbf{f}(\mathbf{x})=\log \mathbf{x}$
-1	undefined
0	undefired
1	0
2	0.301
3	0.477
4	0.602
5	0.699
6	0.778
7	0.845
8	0.903
9	0.954
10	1

\mathbf{x}	$\mathbf{g}(\mathbf{x})=$ 2logx
-1	undefined
0	undefined
1	0
2	0.602
3	0.954
4	1.204
5	1.398
6	1.556
7	1.690
8	1.806
9	1.908
10	2

Example 1: Complete the table to predict the characteristics of each function.

Function	x- intercept	Number of y- intercepts	End Behaviour	Domain	Range	Increasing or Decreasing
$y=-4 \log x$	\mid	none $(-)$	$\mid V \rightarrow 1$	$x>0$	$y \in \mathbb{R}$	decreasing
$y=13 \ln x$	1	none	$N \rightarrow 1$	$x>0$	$y \in \mathbb{R}$	increasing
$y=20 \log x$	\mid	none	$N \rightarrow 1$	$x>0$	$y \in \mathbb{R}$	increasing
$y=-10 \ln x$	1	none	$\mid V \rightarrow 1$	$x>0$	$y \in \mathbb{R}$	decreasing

Example 2: Match each function with it corresponding graph.
i) $y=3.6$ increasing
(ii) $y=-2 \log x$
(iii) $\begin{aligned} & \mathrm{e}=5^{x} \\ & \text { (ponential }\end{aligned}$
a)

b)

iil
c)

1

The graph of a logarithmic function of the form $f(x)=\operatorname{alogx}$ or $f(x)=$ aln x will look like one of the following cases.

Case I. an increasing function, where a >0

- The graph of $y=\log x$ is a reflection of the graph of $y=10 \%$ about the line $y=k$

Case 2- a decressing function, where a <0

- The graph ol $y=\ln m$ is a reflection of the graph al $y=e^{x}$ about the line $y=x$

