Lesson Notes 7-4

The function $y = \log_{10} x$ is equivalent to $x = 10^{y}$, so a logarithm is an exponent. The meaning of $\log_{10} x$ is "the exponent that must be applied to base 10 to get the value of x". For example, $\log_{10} 100 = 2$.

The expression $\log_{10}x$ is known as the common logarithm or a logarithm with a base of 10. The expression is often written without the 10, so the two functions $y = \log_{10}x$ and $y = \log x$ are equivalent.

The symbol e is a constant known as Euler's number. It is an irrational number that equals 2.718.... A logarithm with base e is called the natural logarithm and is written as lnx.

Complete the table of values for the following functions and graph the function on the grid provided.

X	$f(x) = \log x$				
-1	undefined				
0	undefined				
1	Ö				
2	0.301				
3	0.477				
4	6.602				
5	0,699				
6	6.778				
7	0.845				
8	0,903				
9	0,954				
10	1				

•

Example 1: Complete the table to predict the characteristics of each function.

Х-	Number	End	Domain	Range	Increasing (+
intercept	of y-	Behaviour			or
	intercepts				Decreasing (-
1	None	$(\vee \rightarrow)$	270	y ETR	decreasing
l	None	IV → I	270	VER	Increasing
1					
	None	$N \rightarrow 1$	270	YEIR	Increasing
l	None	$ \sqrt{\neg} $	OCX	YETR	decreasing
	x- intercept	x- intercept 1 None 1 None 1 None 1 None	x- interceptNumber of y- interceptsEnd Behaviour 1 $nore$ $1/(-7)$	x- interceptNumber of y- interceptsEnd BehaviourDomain 1 $nore$ $N \rightarrow 1$ $\chi \rightarrow 0$	x- interceptNumber of y- interceptsEnd BehaviourDomain $I = 0$ Range $I = 0$ 1 $Nore$ $IV \rightarrow I$ $\chi \rightarrow 0$ $\chi \in TR$ 1 $Nore$ $IV \rightarrow I$ $\chi \rightarrow 0$ $\chi \in TR$ 1 $Nore$ $IV \rightarrow I$ $\chi \rightarrow 0$ $\chi \in TR$ 1 $Nore$ $IV \rightarrow I$ $\chi \rightarrow 0$ $\chi \in TR$ 1 $Nore$ $IV \rightarrow I$ $\chi \rightarrow 0$ $\chi \in TR$

The graph of a logarithmic function of the form $f(x) = a \log x$ or $f(x) = a \ln x$ will look like one of the following cases.

Case 1: an increasing function, where a > 0

 The graph of y = log x is a reflection of the graph of y = 10^s about the line y = x.

Case 2: a decreasing function, where a < 0

 The graph of y = ln x is a reflection of the graph of y = e^x about the line y = x.

