The number of permutations of n different objects taken r at a time is: $\mathrm{P}_{\mathrm{r}}=\frac{n!}{(n-r)!}$
Example 1: Matt has downloaded 10 new songs from an online music store. How many different 6 -song play lists can be created from 10 songs?

$$
10 P_{6}=\frac{100}{4!}=151200
$$

$$
\begin{array}{r}
\text { Math } \rightarrow \operatorname{Prb} \quad 2: n \operatorname{Pr} \\
10 \mathrm{nPrb}
\end{array}
$$

Example 2: How many 8 -song play lists could Matt in example 1 create?

$$
10 P_{8}=1,814,400
$$

Example 3: State the values of n for which each expression is defined.
a) $(n+3)!\quad n+3>0$
(b) $\frac{n!}{(n+2)!} n>0$

$$
n>-3
$$

$$
\begin{gathered}
n+2>0 \\
n>-2
\end{gathered}
$$

Example 4: An online magazine requires each subscriber to have a password with exactly 8 characters. The password can use any digits from 0 to 9 and/or any letters of the alphabet. The password is case sensitive, so she can use both lower- and upper-case letters. How many different passwords are possible?

$$
26+26+10
$$

$$
\begin{aligned}
{ }_{62} P_{8}= & 1.36 E 14 \\
& 1.36 \times 10^{14}
\end{aligned}
$$

Example 5: How many different passwords are possible in example 4 if the password must be at least 4 characters but a maximum of 6 characters?

$$
\begin{aligned}
& \frac{4 \text { chic }}{{ }_{62} P_{4}=13388280} \frac{5 \text { chirac }}{{ }_{62} P_{5}=776522240} \\
& \text { Total }=4.51 \times 10^{10}
\end{aligned}
$$

Example 6: At a used car lot, seven different car models are to be parked close to the street for each viewing.
a) The three red cars must be parked so that there is a red car at each end and the third car is exactly in the middle. How many ways can the seven cars be parked?

$$
\frac{3}{R} \leq \frac{3}{R}-1 \frac{1}{R}=144!
$$

b) The three red cars must be parked side by side. How many ways can the seven cars be parked?

$$
15 \ln ^{2} \underline{2} 1 \quad 5 \cdot 3: 1=720
$$

