Lesson 3: Review of Graphing Lines

All lines can be written in the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ where $\mathrm{m}=$ Slope \qquad (or the steepness of the line) and $b=y$-intercept (where it crosses the y axis). Recall, that slope is defined as rise over run.

Example 1: State the slope and y-intercept of the following lines.

(d)

To graph lines of this form the following steps must be followed:
Step 1: Plot the y-intercept on the y axis
Step 2: From the y-intercept plot the slope (ie. rise over run)
Step 3: Repeat step 2 to determine another point on the line
Example 2: Graph the following lines on the grid provided.
a) $y=\frac{1-r i s e}{3} x-2$
(b) $y=\frac{-2}{1} x+5$

If the equation of a line is not given in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form we must rearrange the equation into this form prior to graphing.

Example 3: State the slope and y-intercept of the following lines.
a) $3 x+4 y=12$
$-3 x \quad-3 x$
$\frac{4 y}{4}=-\frac{3 x}{4}+\frac{12}{4}$
$y=-\frac{3}{4} x+3$

Example 4: Graph the following lines.
(b) $-2 x-5 y=25$
$\neq 2 x \quad+2 x$
$\frac{-5 y}{-5}=\frac{2 x}{-5}+\frac{25}{-5}$
$y=\frac{-2 x}{5}-5$
a) $5 x+4 y-8=0$
$4 y=-5 x+8$ $y=-\frac{5}{4} x+2$

(b) $-3 x-2 y=10$
$-2 y=3 x+10$
$y=\frac{-3 x}{2}-5$

