The compound interest formula has several equivalent forms that you can use to solve compound interest problems.

To determine the future value, use $\mathrm{A}=\mathrm{P}(1+\mathrm{i})^{\mathrm{nt}}$.

To determine the present value, or principal, use

$$
\text { To compare investments, use the rate of return, } \quad \frac{A}{P}=(1+i)^{n t}
$$

$$
\begin{aligned}
& P=\frac{A}{(1+i)^{n t}} \quad i=\frac{r}{n} \\
& \begin{aligned}
A & =(1+i)^{n t} \\
& 3000
\end{aligned} \\
&=P\left(1+\left(\frac{6.067}{2}\right)^{2 \prime}\right.
\end{aligned}
$$

Example 1: Ethan has won a valuable cash award in a science fair. He plans to invest some of the cash in an account that offers 6.7% interest, compounded semi-annually. He wants the investment to have a future value of $\$ 3000$ after 5 years. How much does Ethan need to invest now?

$$
P=\frac{A}{\left(1+\frac{r}{n}\right)^{r^{2}}}=\frac{3000}{\left(1+\frac{0.060}{2}\right)^{n-2}}=\frac{3000}{1.3603^{3}}=2157.81
$$

Example 2: Emma has invested $\$ 12300$ in a registered education savings plan (RESP).
Emma wants her investment to grow to at least $\$ 40000$, so that her newborn can go to university at age 18 . What interest rate, compounded annually, will result in a future value of $\$ 40000$?

Example 3: Wyatt has a choice between two investments.

- Investment A: A 10 year bond with an interest rate of 4.8%, compounded annually, and a future value of $\$ 70000$
- Investment B: A 5 year bond with an interest rate of 4.8%, compounded
annually, and a future value of $\$ 35000$
- Investment B: A 5 year bond with an interest rate of 4.8%, compounded
annually, and a future value of $\$ 35000$

Which investment has the greatest ratio of future value to present value? Explain

$$
\begin{aligned}
& \begin{array}{l}
A=P\left(1+\frac{\Sigma}{\hat{n}}\right)^{\text {tr }} \\
40000=12300(1+\Gamma)^{18.1}
\end{array} \\
& \sqrt[18]{3.2520}=\sqrt[19]{(1+r)^{8}} \\
& 4000=12360 / 1+1)^{18} \\
& \begin{aligned}
A & =P(1+\hat{r} \\
40000 & =12300\left(1+\frac{r}{T}\right)^{18.1} \quad 1.0677=1+r \\
-1 & -1
\end{aligned} \\
& 0.0677=r \quad 6.8 \%=r \\
& A=P(1+r \quad \sqrt{2})^{\text {tn }} \quad 3.2520=\sqrt{(1+r)^{2}}
\end{aligned}
$$

