Factorial notation is a concise representation of the product of consecutive descending natural numbers: $n!=n(n-1)(n-2) \ldots(3)(2)(1)$. For example, $4!=(4)(3)(2)(1)$.

Example 1: Evaluate the following.
a) $6!=720$
(b) $\frac{13!}{(4!9!)}=715$

Example 2: Simplify the following, where n is a natural number.
a) $(n+3)(n+2)$!
(b) $\frac{(n-3)!}{n!}$

$$
(n+3)(n+2)(n+1)(n \quad(n-1) \ldots
$$

$=(n+3)!$

Example 3: Solve the following equations given in factorial notation.

$$
\text { a) } \frac{n!}{(n-2)!}=90
$$

$$
n(n-1)=90
$$

$$
n^{2}-n=90
$$

$$
n^{2}-n-9^{m}=0
$$

$$
(n+9)(n-10)=0
$$

$$
n+9=0 i n-10=0
$$

(b) $\frac{(n+4)!}{(n+2)!}=6$

$$
n^{2}+3 n+4 n+12=6
$$

$n^{2}+7 n+6^{m}=0$
$\left(n+6 Y_{n}+1\right)=0$
$n=-6$ ar no solution

