Last lesson we investigated polynomial functions by looking at a graph. In this lesson, we are asked to match graphs to their equations as well as determine characteristics without graphing. There are some important things to remember.
When a polynomial function is in standard form:

- The maximum number of x-intercepts the graph may have is equal to the degree of the function.
- The maximum number of turning points the graph may have is equal to one less than the degree of the function.
- The degree and leading coefficient indicate the end behaviour of the graph of the function.
- The y-intercept of the graph is equal to the constant term of the function.

The standard form of polynomial functions can be written in the following ways:

- If linear, $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b} \quad$ - If quadratic, $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
- If cubic, $f(x)=a x^{3}+b x^{2}+c x+d$

Linear and cubic polynomial functions have similar end behaviour.

- Negative leading coefficient: the graph extends from Quadrant II to Quadrant IV
- Positive leading coefficient: the graph extends from Quadrant III to Quadrant I

Quadratic polynomial function have a different end behaviour.
-Negative leading coefficient: the graph extends from Quadrant III to Quadrant IV

- Positive leading coefficient: the graph extends from Quadrant II to Quadrant I

In your descriptions of characteristics of a function we must include the number of xintercepts, the y-intercept, end behaviour, domain, range, and the number of possible turning points.

Example 1: Determine the characteristics of each function, using only its equation.
a) $f(x)=4 x+2$

- degree: \qquad
- leading coefficient: 4
- constant term: 2
- number of x-intercepts
- y-intercept: 2

- extends from Quad

- domain: $\lambda \in \mathbb{R}$
- range: $y \in \mathbb{R}$
- number of turning points:
(b) $f(x)=-5 x^{2}+2 x-1$
- degree: 2
- leading coefficient: -5
- constant term: - /
- number of x-intercepts: 0
- y-intercept: -
- extends from Quad III
to Quad V
- domain: $x \in \mathbb{R}$
- range: $y \leq-1$
- number of turning points: \qquad

Example 2: Match each graph to the correct polynomial function.
(i) $f(x)=-x^{(3)}-2 x^{2}+x-1$
(ii) $g(x)=3 x+2$
(iii) $h(x)=-0.3 \mathrm{x}+2$
(iv) $j(x)=\left(3^{3}+x^{2}+2 x^{-}-2\right.$

-re

C.

B.

D.

