Algebraic Pre-Requisites

Using your calculator and algebra skills, determine the value of x in the following equations.
a) $72=(x)(0.08)(4)$
$\frac{72}{0.32}=\frac{x(0.32)}{0.32}$
(b) $\quad \mathrm{x}=(8500)(0.05)(80 / 365)$

$225=x$
c) $19.74=(94)(\mathrm{x})(3)$
$\frac{19.74}{282}=\frac{282 x}{282}$ $0,07=x$
(d) $3.7=(222)(0.025)(x / 12)$

$$
\begin{aligned}
\frac{3.7}{0.4625} & =\frac{0.4625 x}{0.4625} \\
8 & =x
\end{aligned}
$$

If some of your income is deposited into a bank, it can earn interest, a fee for allowing the temporary use of your money. Likewise, if you borrow money from the bank, they will expect to earn interest from you.

Simple interest is calculated as a percentage of the amount deposited or borrowed (the principal). The formula we use for simple interest is:

$$
\begin{aligned}
& I=\operatorname{Prt} \quad \text { where } I=\text { Interest earned } \\
& \\
& \\
& \\
& \\
& \\
& r=\text { Principal, the amount invested or borrowed } \\
& t
\end{aligned}
$$

The future value of an investment can be determined by adding the principal to the amount of interest earned. The formula we use is:

$$
\mathrm{A}=\mathrm{P}+\mathrm{I} \quad \text { or } \quad \mathrm{A}=\mathrm{P}+\mathrm{Prt} \quad \text { where } \mathrm{A}=\text { future value }
$$

Example 1: Mary deposited $\$ 200$ into an account earning simple interest of 4% per year. Calculate the simple interest earned at the end of one year and at the end of five months.
After 1 year: $I=\operatorname{Pr} t=(200)(0.04)(1)=8$
After 5 months: $=(200)(0.04)\left(\frac{5}{12}\right)=3.33$

Example 2: Find the interest earned if $\$ 500$ is invested at $41 / 2 \%$ per annum for 80 days and then for 5 years.

After 80 days: $I=\operatorname{Pr} t=(500)(0.045) \frac{(80)}{365}=4.93$
After 5 years: $I=P_{r} t=(500)(0.045)(5)=112.50$
Sometimes the simple interest figure will be given and you will need to calculate p , r , or t . In these cases, division will need to be performed to obtain the solution. Here is a handy method of remembering the formula and when to multiply or divide.

If you are trying to determine the value of $r \ldots \frac{I}{\rho \cdot t}$
If you are trying to determine the value of $p \ldots \frac{I}{r \cdot t}$
If you are trying to determine the value of $t \ldots \frac{I}{\rho \cdot r}$
Example 3: Alice deposited $\$ 4000$ into an account earning simple interest at a rate of 6.2% per year. Calculate the number of months the money was in the account if it earned \$260 interest.

$$
t=\frac{I}{P \cdot r}=\frac{200}{4000(0.062)}=1,05 \text { yrs } \times 12=12.58 \text { months }
$$

Example 4: If Gerri borrowed $\$ 800$ from her grandmother for nine months and owed $\$ 32$ interest fees, what was the simple rate of interest they agreed upon?
$r=\frac{I}{p t}=\frac{32}{800 \cdot 9 / 12}=0.053$
5.3%

Example 5: How much money would you have to invest at $53 / 4 \%$ per annum in order for it to earn $\$ 37$ in interest after 300 days?

$$
p=\frac{I}{r t}=\frac{37}{0.0575\left(\frac{300}{365}\right)}=782.90
$$

Example 6: Marty invested in a $\$ 2500$ guaranteed investment certificate (GIC) at 2.5% simple interest, paid annually, with a term of 10 years.
a. How much interest will accumulate over the term of Marty's investment?

$$
\begin{aligned}
I & =P r t \\
& =(2500)(0.025)(10) \\
& =625
\end{aligned}
$$

b. What is the future value of his investment at maturity?

$$
2500+625=3125
$$

