Lesson 2: Review of Steps in Factoring

1. ALWAYS take out common factors first.

$$
6 x^{3}+12 x^{2}+3 x=3 \times\left(2 x^{2}+4 x+1\right)
$$

2. Terms in brackets:
a. If there are identical terms in brackets, take them out as a common factor.

$$
2 x(x-2)+3(x-2)=(x-2)(2 x+3)
$$

b. If one bracket has opposite signs, be sure to change all signs for that bracket by multiplying by -1 .

$$
x^{2}(x-3)+2 x(x-3)+2(-3+x)=(x-3)\left(x^{2}+2 x+2\right)
$$

3. When there are three terms in a quadratic:
a. "Easy" type with no coefficient in front of the x^{2} term; find two factors that multiply to give the first term and add to give the middle term.

$$
\begin{aligned}
& x^{2}-9 x+14=(x-2)(x-7) \\
& 3 x^{2}+3 x-6=3\left(x^{2}+x-2\right)=3(x+2)(x-1)
\end{aligned}
$$

b. "Harder" type with a number in front of the x^{2} term; multiply the first and last term coefficients: find two factors that multiply to give this new number and add to give the middle term; divide each of these numbers by the x^{2} coefficient.

$$
\left(x+\frac{8}{3}\right)\left(x-\frac{3}{3}\right)=(3 x+8)(x-1)
$$

4. If there are only two terms, look for perfect squares and factor as a difference of squares.
a. Remember those common factors first!

$$
\begin{aligned}
12 x^{2}-75= & 3\left(4 x^{2}-25\right) \\
& 3(2 x-5)(2 x+5)
\end{aligned}
$$

b. The perfect squares may already be in a factored form.

$$
\begin{gathered}
(x+2)^{2}-(x-3)^{2}[(x+2)+(x-3)][(x+2)-(x-3)] \\
(2 x-1) 5
\end{gathered}
$$

c. Remember to check for a second set of perfect squares to factor again, but only a difference of squares can be factored, NOT a sum of squares.

$$
\begin{aligned}
16 x^{4}-81 & =\left(4 x^{2}+9\right)\left(4 x^{2}-9\right) \\
& =\left(4 x^{2}+9\right)(2 x-3)(2 x+3)
\end{aligned}
$$

