An exponential function is of the form $y=a(b)^{x}$ where $a \neq 0, b>0$, and $b \neq 1$. The graphs of exponential function are very unique. Complete the following table of values for the indicated exponential functions and graph the functions on the grid provided.

$$
f(x)=10^{x}
$$

x	y
-2	0.01
-1	0.1
0	1
1	10
2	100

$$
h(x)=\left(\frac{1}{2}\right)^{x}<1 \text { decrearing }
$$

x	y
-2	
-1	2
0	1
1	0.5
2	0,25

$$
j(x)=8\left(\frac{1}{4}\right)^{x}
$$

x	y
-2	
-1	
0	
1	
2	

For the above graphs, determine the number of x-intercepts, the number of y-intercepts, the end behaviour, the domain, and the range. In summary, all exponential functions written in the form $f(x)=a(b)^{x}$ have the following characteristics:

Number of x-intercepts	none
Number of y-intercepts	1
End Behaviour	$\pi \rightarrow I$
Domain	$x \in \mathbb{R}$
Range	$y>0$

To determine the y-intercept (ie. where the graph crosses the y -axis) we can substitute 0 for x and solve for y .

Example 1: Determine the number of x-intercepts, the y-intercept, the end behaviour,
the domain, and the range of the following functions.
a) $f(x)=2(5)^{x}$ 71 Increasing
(b) $f(x)=8\left(\frac{3}{4}\right)^{x}<1$ decreasing
$x \operatorname{rin} t=\varnothing$
y-int. $=2(\dot{x})^{\circ}$
$=2$
EBB.: I $\rightarrow I$
$D: x \in \pi$
$R: y>0$

Example 2: Match each function with the corresponding graph below. Provide your reasoning.
i) $y=(3)^{x}$
(ii) $y=\frac{1}{3}(3)^{x}$
(iii) $y=3\left(\frac{1}{3}\right)^{x}$
(iv) $y=\left(\frac{1}{3}\right)^{x}$
y-int= 1
y-int $=\frac{1}{3}$
y-int= 3 y-in ts

c)

b)

d)

