Lesson Notes 7-1

An exponential function is of the form $y = a(b)^x$ where $a \neq 0$, b > 0, and $b \neq 1$. The graphs of exponential function are very unique. Complete the following table of values for the indicated exponential functions and graph the functions on the grid provided.

$$f(x) = 10^{x}$$

$$\hline x \quad y \\ -2 \quad 0.01 \\ 1 \quad 0 \quad 1 \\ 0 \quad 0 \quad 0^{-2} \\ 0 \quad 0^{-1} \\ 0 \quad 0^{-2} \\ 0^{-1} \\ 0^{-1} \\ 0^{-1} \\ 0^{-1} \\ 0^{-2}$$

 $g(x) = 2(5)^x$

Х	у
-2	0.08
-1	0,4
0	2
1	10
2	50

Х	у
-2	
-1	
0	
1	
2	

For the above graphs, determine the number of x-intercepts, the number of y-intercepts, the end behaviour, the domain, and the range. In summary, all exponential functions written in the form $f(x) = a(b)^x$ have the following characteristics:

Number of x-intercepts	None
Number of y-intercepts	
End Behaviour	T->I
Domain	XETR
Range	v 20

To determine the y-intercept (ie. where the graph crosses the y-axis) we can substitute 0 for x and solve for y.

Example 1: Determine the number of x-intercepts, the y-intercept, the end behaviour, the domain and the range of the following functions -

the domain, and the range of the following functions. lowing functions. (b) $f(x) = 8\left(\frac{3}{4}\right)^x < 1$ decreasing a) $f(x) = 2(5)^{x}$ / (Acreasing Y-int = 8 (3) = 8 X-int= Ø Y-int.= 2(5)° = 2 E.B. - II -> I D: XER R: 4>0

Example 2: Match each function with the corresponding graph below. Provide your reasoning.

