Working with scale factors and 3-D objects is similar to working with area and scale factors. We must remember that scale factors are applied to the length, width, and height of the original shape. As a result, when determining the surface area of the scale diagram we must square the scale factor. When determine the volume of the scale diagram we must cube the scale factor.

Example 1: An artist wants to build a replica of the pyramid for an installation at an art gallery. The artist is restricted by the floor dimensions, which are 6.0 m by 6.0 m , and the ceiling height of 3.5 m . As well, the glass sculpture must have room for a 1.0 m walkway around its base. The actual pyramid has a base length of 230.4 m and a slant height of 186.4 m . What scale factor could the artist use to build the sculpture?

Example 2: How much glass will the artist need to build the sculpture in example 1?

$$
\begin{aligned}
S_{A} & =H^{2} t 2 l s \\
& =2(4)(3.1) \quad S=\frac{180.4}{60}=3.1 \\
& =24.8
\end{aligned}
$$

Example 3: A small tank has a capacity of $1400 \mathrm{~m}^{3}$, and a similar larger tank has a capacity of $4725 \mathrm{~m}^{3}$. How many times longer will it take to fill the larger tank than it will take to fill the smaller tank?

$$
\frac{V_{\text {lay }}}{V_{\text {Shul }}}=\frac{4725 x_{1}}{1400.375}
$$

Example 4: How many times greater is the radius of the larger tank than the radius of the smaller tank in example 3 ?

$$
\begin{aligned}
& V_{\text {small }} k^{3}=V_{\text {large }} \\
& \frac{1400 k^{3}}{\sqrt[1400]{3}}=\frac{4725}{1400} \\
& \sqrt[3]{k^{3}}=\sqrt[3]{3.375} \\
& k=1.5
\end{aligned}
$$

$$
12-16,19 \text { omit }
$$

