Example 1: Graph the following inequalities on the grid provided.
a) $\mathrm{y}-\mathrm{x} \geq 10$
$y \geqslant 1 x+10$
(b) $y<x+3$

$$
0-0 \geqslant 10 \quad 0 \geqslant 10 \mathrm{~F}
$$

Example 2: Consider the graph of the inequality $x-2 y<7$. Determine which of the following points are in the solution region.

x $(-1,0)$ $-1-2(0)^{?}<7$	$2-2(4)^{(2,4)} \cdot 7^{(-3,-10)}$	$-3-2(-10)<7$
$-1<7$	$-6<7$	$17<7$
Yes	Yes	No

Example 3: Hailey and Caitlin make and sell bracelets to raise money for their school social committee. Beaded bracelets sell for $\$ 19$ each, and rubber band bracelets sell for $\$ 2$ each. In one day, they raised $\$ 278$. Define variables for this situation and write a linear inequality to represent the situation.

$$
\begin{aligned}
& \text { let } x=\# \text { beaded bracelets } y=\text { \#rubber band bracelets } \\
& x \geqslant 0 \\
& y \geqslant 0 \\
& 10 x+2 y \geqslant 278
\end{aligned}
$$

Example 4: A local animal shelter is preparing pamphlets and letters to raise awareness of the shelter and to solicit donations.

- No more than 250 of each type of correspondence are needed.
- No more than 500 pamphlets and letters in total will be printed.
- Pamphlets cost 45 cents each to print, and letters cost 20 cents each to print.

Let p represent the number of pamphlets to be printed and 1 represent the number of letters. Write a system of linear inequalities that models the situation.

$$
\begin{array}{lc}
p \leq 250 & 0.45 p+0.22 l=C \\
l \leq 250 & \text { (objective function) } \\
p+l \leq 500 & \\
p \geqslant 0, l \geqslant 0 & \text {-implicit complaints }
\end{array}
$$

Example 5:
a) What are the vertices of the feasible region of the graph?

$$
(-2,-3,5)^{(-2,4)} \quad(4,-2)
$$

b) Which point in the model would result in the maximum value of the objective function $\mathrm{W}=\mathrm{y}+4 \mathrm{x}$? Which point in the model would result in the minimum value of the objective function?

$$
\begin{array}{ll}
\quad \text { minimum value of the objective function? } \\
W=-3.5+4(-2)=-11.5 & \text { max Value is } 14 \text { at }(4,-2) \\
W=4+4(-2)=-4 & \text { min Value is }-11.5 \text { at }(-2) \\
W=-2+4(4)=14 &
\end{array}
$$

Example 6: Yanni collects stamps and baseball cards.

- He has at most 100 stamps and at most 75 cards, but at least one of each.
- There were no more than 150 items, in total.
a) Define variables x and y for this problem.

b) Write a system of inequalities to represent the constraints in this problem, including implicit constraints.

c) Draw a graph to show the time Alyssa could spend on each activity in one week.

