The following numbers represent the number of employees absent from work over a nine day period: $2,6,5,4,7, \not, \not, \not, 5, \not, \chi$.
Order the data: $0,1,2,2,4,5,5,6,7$
Identify the median: 4

Percentiles

A very large sample may be split into 100 parts called percentiles, or ten parts called decile. Essentially the $3^{\text {rd }}$ decile is equivalent to the $30^{\text {th }}$ percentile. To score in the $90^{\text {th }}$ percentile indicates 90% of scores were less than or equal to your score.

Quartiles are descriptive measures that separate large ordered data sets. Quartiles are the data items that are one quarter and three quarters of the way through a list.

The lower or first quartile (Q1) is the $25^{\text {th }}$ percentile. The first quartile divides ordered data such that 25% of observations are at or below this value.

The upper or third quartile (Q3) is the $75^{\text {th }}$ percentile.
The inter-quartile range is the difference between Q3 and Q1. The inter-quartile range measures the spread of the middle 50% of the data.

Example: Given the following data calculate the median, Q1, the upper boundary and the inter-quartile range.

$$
\begin{aligned}
& \quad 8, \alpha 0,0,5,6,2,8,2,0, \lambda, \phi, 7 \\
& \quad 0,0,1, y, 5,5,6,6,7,8,9,10 \\
& \text { median } 5,5 \quad Q, 5-Q 1=7-1=6 \\
& Q 1=1 \\
& Q\}=7
\end{aligned}
$$

A Box and Whisker Plot is a useful way to represent an ogive, and quickly shows the median, quartiles and spread of data.

Make a Box and Whisker plot of the data from the previous page.

Compare these two sets of data.

Range is a measure of dispersion easy to calculate but not as useful as others.
Deviation is the difference of the value x and the mean value $\bar{x} . x-\bar{x}$
Variance, σ^{2}, is the mean of the deviations squared. $\quad \sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n}$

Standard Deviation, σ, is the square root of the variance. $\quad \sigma=\sqrt{\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}}$

Example: Calculate the standard deviation of the heights of the following trees:
$30,17,32,25,31,28,35,26$
By hand: $\frac{30+17+32+25+31+28+35+26}{8}=28$

