Angle Properties in Polygons
The sum of the measures of the interior angles of a polygon can be determined using the formula:

$$
\mathrm{S}=180^{\circ}(\mathrm{n}-2) \quad \text { where } \mathrm{n} \text { is the number of sides of the shape }
$$

Example 1: Outdoor furniture and structures like gazebos sometimes use a regular hexagon in their building plan. Determine the measure of each interior angle of a regular hexagon.

$$
\begin{aligned}
& S=180(6-2) \\
& =\frac{720}{6}=120
\end{aligned}
$$

Example 2: Determine the measure of each interior angle of a regular 15-sided polygon.

$$
\begin{aligned}
S & =180(15-2) \\
& =180(13) \\
& =\frac{2340}{15}=156
\end{aligned}
$$

Example 3: A floor tiler designs custom floors using tiles in the shape of regular polygons. Can the tiler use congruent regular octagons and congruent squares to tile a floor, if they have the same side length?

