Example 1: Mr. Keeley is wanting the best deal to fill up his car. His gas tank holds about 60 L . He can either buy gas in Abbotsford at $\$ 1.19 / \mathrm{L}$ or travel across the border into the United States to fill up at $\$ 3.25 / \mathrm{gal}$. Which option makes the most sense? (1 US gallon is equivalent to 3.79 L)

$$
\begin{aligned}
& \frac{\text { Cancta }}{\$ 1.19} L \times 60 L \$ 71.4 \\
& \frac{U S}{60 L^{\prime}} \times \frac{1 \text { gal }}{3.79 L}=15.8 \text { gal } \\
& 15.8 \mathrm{gal} \times \frac{93.25}{\text { l gal }}=51.35
\end{aligned}
$$

Example 2: Describe a situation in which each unit rate might be used. Identify and explain factors that could influence the unit rate in this situation.

$$
\begin{aligned}
& \text { a) } 0.05 \mathrm{mg} / \mathrm{kg} \\
& \text { Cooling (portion control) } \\
& \text { deticounter } \\
& \text { prescription drag }
\end{aligned}
$$

Example 3: Paula is asked to order snacks for an office meeting of 125 people. She decides to order dessert squares, which comes in boxes of 24 . She estimates that she will need 2.5 squares/person. How many boxes should she buy?

$$
125 \times 2.5=\frac{312.5}{24}=13.02
$$

Example 4: Amanda walks at $6 \mathrm{~km} / \mathrm{h}$ and when she walks at this rate for 2 h , she burns 454 Cal . Bruce walks at $4 \mathrm{~km} / \mathrm{h}$, burning 62 Cal in 30 min . If Amanda walks for 3 h , how much longer will Bruce have to walk in order to burn the same amount of Calories?

$$
\begin{aligned}
& \text { A } \frac{454 \mathrm{cal}}{22 r}=227 \mathrm{ca} / \mathrm{hr} \times 3 \mathrm{~h}=681 \mathrm{cal} \\
& \underline{B} \frac{62 \mathrm{cal}}{0.5 h_{r}}=124 \mathrm{ca} / \mathrm{hr} r \\
& \frac{681}{124}=\frac{124 x}{124} \\
& 5.5 h r=x
\end{aligned}
$$

