Foundations of Math 11

Example 1: Factor the following expressions.
a) $x^{2}+3 x-10 h$
(b) $4 x^{2}-16$

$$
(2 x-4)(2 x+4)
$$

(c) $2 x^{2}-3 x-20$

$$
\begin{aligned}
& \qquad(x+5)(x-2) \\
& \text { Example 2: Solve the following by factoring. } \\
& \text { a) } x^{3}+7 x^{2}+10 x=0
\end{aligned}
$$

(b) $7 x^{2}-68=-5(x-4)(2 x+5)$

$$
\begin{aligned}
& 7 x^{2}-63=0 \\
& 7\left(x^{2}-9\right)=0 \quad x=-3,3 \\
& 7(x+3)(x-3)=0
\end{aligned}
$$

(b) $x^{2}-4 x=1$

$$
\begin{aligned}
& x^{2}-4 x-1=0 \\
& x=\frac{(-4) \pm \sqrt{(-4)^{2}-4(1)(-1)}}{2(1)} \\
& =\frac{4 \pm \sqrt{20}}{2}=\frac{4 \pm 2 \sqrt{5}}{2} \\
& =2 \pm \sqrt{5}
\end{aligned}
$$

Example 4: Complete the square, state the vertex, and whether it has a maximum or minimum value for the following.
a) $y=\left(x^{2}-6 x\right)+10$
(b) $y=1 / 2 x^{2}+10 x-7$

$$
y=\left(x^{2}-6 x+9-9\right)^{2}+10
$$

$$
y=1 / 2\left(x^{2}+20 x+100-100\right)-7
$$

$y=\left(x^{2}-6 x+9\right)+10-9 \quad 1 \quad \mathrm{~min}$
positive $y=(x-3)^{2}+1$
min

$$
v:(3,1)
$$

$$
\bigcap_{\max }
$$

$$
\begin{aligned}
& y=\frac{1}{2}\left(x^{2}+20 x+100\right)-7-100\left(\frac{1}{2}\right) \\
& y=\frac{1}{2}(x+10)^{2}-7-50 \\
& y=\frac{1}{2}(x+10)^{2}-57 \\
& V:(-10,-57) \\
& \quad \min
\end{aligned}
$$

Example 5: Graph and answer the following questions.
a) $y=(x-4)^{2}-4$

Domain: $x \in \mathbb{R}$
Range \qquad
$x=0$ y-intercept. $\frac{12}{2,6} \quad y=(0-4)^{2}-4$
$y=0$ x-intercept: $\quad y=12$

$y=12$
b) $y=-1 / 2(x+3)^{2}+2$

$$
\begin{aligned}
& \pm 2=x-4 \\
& 4 \pm 2=x
\end{aligned}
$$

Vertex: $(-3,2)$
Axis of symmetry: $x=-3$
Domain: \qquad
Range: $14-2$
y-intercept: -2.5
x-intercept: $-1,-5$

Example 6: Determine the equation of the following quadratic function.
a) Has a vertex $(1,5)$, opens down, and is congruent to $y=2 x^{2}$.

b) Has a vertex $(-1,3)$ and goes through the point $(5,4)$.
c)

$$
\begin{aligned}
& y=(x+1)^{2}+3 \\
& \begin{array}{l}
4=a(5+1)^{2}+3 \quad y=\frac{1}{36}(x+1)^{2}+3 \\
1=a(36)
\end{array} \\
& \begin{array}{l}
=a(36) \\
\left(\frac{1}{36}\right)=a
\end{array} \\
& y=2(x-2)^{2}-2 \\
& (2,-2)
\end{aligned}
$$

